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Glossary 
Auditing: In the context of soil carbon, verifying an estimate of the soil organic stocks at a point in 
time. See also: benchmarking. 

Benchmarking: here refers to quantifying soil organic stocks in a CEA at time zero (a baseline).  

Bulked sample: A sample in which the sampling units are pooled and homogenised. Sometimes 
called a composite sample. 

Carbon estimation area (CEA): a defined area of land where soil organic carbon stocks will be 
estimated. For example, in the context of this report, a CEA could be a whole farm, a group of 
paddocks or a single paddock. 

Confidence interval: A range of values, within which the true parameter value (e.g. the mean) is 
contained with a specified probability. A 95% confidence interval implies that the estimation process 
will produce an interval within which the true value would be contained with a probability of 0.95. Note 
that the stated probability level refers to properties of the interval. 

Monitoring: determining how soil organic stocks in a CEA change over time.  

Power: The probability of a hypothesis test of finding an effect if there is an effect to be found. A 
power analysis can be used to estimate the minimum sample size required so that a specified change 
in soil organic carbon stocks can be measured, given a desired significance level, effect size, and 
statistical power 

Random sampling: A sample of items selected from a population in such a way that each sample of 
the same size is equally likely to be chosen in the sample. 

Significance level: The probability of rejecting the null hypothesis when it is true. For example, a 
significance level of 0.05 indicates a 5% risk of concluding that a difference in soil organic carbon 
stocks has been detected when there is no actual difference. 

Soil organic Carbon concentration (SOC): The mass of organic carbon per unit mass of oven dried 
soil. Generally expressed in units of grams of carbon per 100 grams of oven dried soil, or percent of 
the mass of the oven dried soil. 

Soil organic Carbon stocks (SOCS): The mass of organic carbon in a sample of known bulk 
density. Generally expressed in megagrams of carbon per hectare (Mg.ha–1) for a nominated depth 
(in this report, 0-30 cm). 

Standard deviation: a measure of the amount of variation that a set of values has from the mean of 
the values. 

Stratum: an area of land within a CEA (plural is strata).  

Stratification: the process by which a CEA is divided into different strata, with land in each stratum 
being relatively homogenous in terms of biophysical features (e.g. soils, topography), land 
management regimes, and soil organic carbon stocks.  

Type I error: In statistical hypothesis testing, a Type I error is where true null hypothesis is rejected. 
This is also known as a "false positive" decision. The Type I error rate or probability is the chance that 
a Type I error is made. 

Type II error: In statistical hypothesis testing, a Type II error is where a false null hypothesis fails to 
be rejected. This is also known as a "false negative". 
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Executive summary 

Background and objectives  

Individual farmers and primary industry organisations in New Zealand are becoming increasingly 
interested in the risks and opportunities associated with sequestering carbon in agricultural soils and 
thus how soil organic carbon stocks (SOCS) and stock changes can be measured. However, there is 
currently no standardised SOCS measurement system recommended for use on New Zealand farms. 
The primary purpose of this report is to provide recommendations for the design of a SOCS 
benchmarking and monitoring programme for individual pastoral farms in New Zealand. The 
expertise required and costs associated with implementation of farm-scale SOCS measurements are 
also outlined.  

Existing SOCS benchmarking and monitoring systems 

There are three existing SOCS benchmarking and monitoring protocols that are relevant at the farm-
scale: 1) the Food and Agriculture Organization’s ‘Measuring and modelling soil carbon stocks and 
stock changes in livestock production systems’ method (FAO 2019); 2) the Australian Governments 
(2018) ‘Carbon Credits (Carbon Farming Initiative – Measurement of Soil Carbon Sequestration in 
Agricultural Systems) Methodology Determination’; and 3) VERRA’s Verified Carbon Standard, Soil 
Carbon Quantification Methodology. We believe the Australian 2018 methodology is the most relevant 
to farm-scale SOCS measurements in New Zealand and it is also robust, having been implemented in 
national legislation and well supported by recent literature. Therefore, we used the Australian 2018 
method to guide the approach recommended in New Zealand, while at the same time considering the 
FAO (2019) and VERRA methods, plus other literature and taking into account any unique issues 
specific to New Zealand landforms and management.  

We believe that currently there is not enough New Zealand data to parameterise models (such as 
used in Australia and Canada) to confidently predict how SOC will change in response to changes in 
management for specific individual farms across New Zealand (due to the diversity of climate, soil 
type and management regimes). However, SOCS data and modelling capability is rapidly increasing 
in New Zealand and this may be an avenue to pursue in the future. 

Recommended approaches for farm-scale SOC benchmarking and monitoring in NZ 

Define objectives and the carbon estimation area(s) (CEA) 

The first step in the development of a SOCS benchmarking and monitoring programme is to clearly 
articulate the objectives including a consideration of the costs and potential benefits. Going through 
this process will help confirm the desire to proceed, and the objectives can influence study design and 
sampling intensity. The CEA also needs to be clearly defined – the whole farm, a group of paddocks 
(i.e. land management unit) or an individual paddock.  

Stratification 

The next step is to assess whether the CEA should be broken into different strata (e.g. based on soils 
and management) within which SOCS and stock changes will be relatively uniform compared with 
those across the whole CEA. Stratification can help enable more precise estimates of SOCS and 
stock changes for a given sampling effort. We recommend using one of two general approaches for 
stratification: 1) a relatively simple approach based on land management units (LMUs) as defined in 
farm environment plans (FEP); and 2) a more complex approach that relies on some prior knowledge 
of SOCS and multiple spatial data layers. Choice of stratification method depends on study objectives 
and availability of existing data, expertise, and money.  

Number of soil samples required 

Estimating the number of soil samples required is challenging and depends on how precise estimates 
of SOCS and stock changes need to be and the variability and rates of change of SOCS. 
Unfortunately, before results are obtained from soil sampling in a CEA, it is difficult to estimate the 
variability of SOCS, since SOCS vary between farms, and therefore it is difficult to calculate how 
many samples would be required without additional information. The best approach is to conduct a 
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pilot study where soil samples are collected from across the CEA and analysed for SOCS. Once an 
estimate of the mean and variance of SOCS has been determined, a power analysis can be used to 
estimate the overall number of sampling sites required to determine baseline SOCS and changes in 
SOCS for a given level of statistical certainty.  

Soil sampling, processing, and analysis 

We recommend using a choice of three soil sampling methods to determine SOCS: 1) deep 
continuous cores; 2) short cores from pits; and 3) quantitative pits. The method chosen is determined 
by on-site soil conditions (e.g. stony soils, sandy soils) and the method used for benchmarking 
(baseline) sampling should also be used for subsequent sampling rounds. Sampling must be to a 
minimum of 30-cm depth and changes in SOCS must be calculated on an equivalent soil mass basis. 
We recommend soil processing and especially organic carbon analysis be undertaken by a laboratory 
with accreditation from International Accreditation New Zealand (IANZ). Following this 
recommendation will ensure that the concentration of SOC in a soil sample will be accurate and 
results between benchmarking and subsequent monitoring rounds consistent and comparable. 

Expertise required 

A range of expertise is required to design and implement a SOCS benchmarking and monitoring 
programme. A key attribute required is the ability to pay attention to detail and repeatedly follow 
protocols precisely. Soil sampling for SOCS needs to be conducted more carefully than for standard 
soil fertility testing because both accurate measurement of the concentration of carbon and total mass 
of soil in a defined sample volume are required. As we are attempting to demonstrate changes as 
small as 2–5% of the stocks, even small errors with sampling, sample processing, and analysis will 
mask true changes or indicate untrue increases or decreases. Currently, the expertise required for 
study design and implementation of the necessary protocols for SOCS benchmarking and monitoring 
can be provided by scientists and associated technicians from Crown Research Institutes (CRIs) or 
universities. Alternatively, many rural professionals (e.g. farm consultants) with some specific training 
related to processes influencing SOCS and stock changes, soil sampling and processing, and 
subsequent data analysis and interpretation could design and implement a SOCS benchmarking and 
monitoring programme for individual farms. Additional specialist statistical skills might be required for 
estimation of the number of samples, and spatial modelling skills would be needed if the detailed 
stratification option were chosen. Development of standardized easy-to-use spreadsheets could 
simplify and streamline the data analysis and interpretation process and would help potential 
aggregation of SOCS data into industry and national databases for wider analyses.  

Costs  

The cost to design and implement a SOCS benchmarking and monitoring system will vary 
considerably between farms, depending on a range of factors, such as the objective (e.g. the 
precision with which SOCS and stock changes need to be determined) farm size, topography, spatial 
variability, and whether individual or composite samples are analysed. The costs will also depend on 
who is designing and implementing the system and the associated charge out rates. An example is 
provided in Section 5.6 of this report. 
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1 Introduction  
Soil organic carbon is critical for overall soil health, and because soils contain over twice as much 
carbon as the atmosphere, any increase or decrease will impact atmospheric CO2 concentrations and 
thus climate. Carbon is continuously cycled in soil and therefore stocks can change over relatively 
short time scales in response to changes in land use and management (and changes in temperature 
and precipitation regimes). In general, losses of carbon can occur faster than gains. Concern over 
climate change is prompting nations, organisations, and individuals to implement actions to curb 
greenhouse gas (GHG) emissions and sequester carbon.  

However, there is currently no standardised system recommended for use in New Zealand, meaning 
there is a risk that poor study design and sampling methods may lead to data being of limited value. 
There is, therefore, an urgent need to reach consensus on the most appropriate method(s) to 
benchmark and monitor changes in soil organic carbon stocks (SOCS) at the farm scale in New 
Zealand. It is also important to clearly outline the expertise required, as well as the costs associated 
with implementation of farm-scale SOCS measurements. Development and documentation of such a 
system will enable landowners/managers to make more informed decisions on whether to and how to 
implement SOCS benchmarking and monitoring. Use of a consistent approach will enable easy 
comparison between farms and scaling to industry, regional and national initiatives (and vice versa).  

The primary purpose of this report is to provide recommendations for the design of a SOCS 
benchmarking and monitoring programme for individual pastoral farms in New Zealand.  

Here, benchmarking refers to quantifying SOCS at time zero (a baseline) and monitoring is 
determining how SOCS change over time. While the focus of this report is on pastoral farms, the 
methods could be easily adapted for other land uses.  

It is important to note that this report only covers the technical aspects of SOCS 
benchmarking and monitoring (e.g. study design and sampling) and does not specifically 
address how derived data could be used in policy, regulatory or marketing contexts.  

In this report we focus mainly on requirements for a statistically robust method for SOCS 
benchmarking and monitoring which could then be modified (e.g. reduce the sampling intensity) if less 
robust results were required. However, it must be emphasised that the approach chosen will impact 
the inference that can be drawn from results. For example, SOCS monitoring with a few samples on 
one area of a farm cannot provide a quantitative estimate of changes for the whole farm.  

 

1.1 Report outline 

The report will begin with an overview of the basic principles of soil carbon benchmarking and 
monitoring and a summary and discussion of existing SOCS benchmarking and monitoring systems. 
This will be followed by a more detailed discussion of the technical issues and options that need to be 
considered before recommending a system for New Zealand.  

Section 5 is the key part of the report and provides recommendations covering overall study 
design, sampling methods, sample processing and analysis, the expertise required and the estimated 
costs associated with the implementation of farm-scale SOCS benchmarking and monitoring in New 
Zealand. The recommendations section is written as a summary of the key steps and in some cases 
refer to other documents which have the specific details required for implementation. Data and 
learnings from previous implementation of SOCS benchmarking on two case-study farms with 
contrasting topography and management were used to inform our recommendations and provide 
examples (Malone et al. 2018). The case-study farms were the Massey University No.1 Dairy and 
Tuapaka sheep and beef farms. 

 

2 Basic principles of soil carbon benchmarking and 
monitoring 

As noted in the introduction, we define benchmarking as quantifying (or auditing) SOCS at time zero 
(a baseline) and monitoring as quantifying how SOCS change over time. To be fully quantitative, the 
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benchmarking and monitoring needs to be representative of a defined spatial area such as a single 
paddock, a group of paddocks (land management unit/block) or the whole farm. Here we define the 
spatial area of interest as a carbon estimation area (CEA). The key questions that need to be 
addressed for soil carbon benchmarking and monitoring are therefore: 

1 What is the spatial mean SOCS for a specific CEA (e.g. farm)? 
2 What is the temporal trend of the spatial mean of the SOCS for a specific CEA?  

 

The key steps for SOC benchmarking and monitoring are: 

1 Define the objectives for the benchmarking and monitoring. 
2 Define and delineate the CEA (e.g. whole farm or a block within the farm). 
3 Assess whether the CEA needs to be broken into homogenous strata (e.g. river flats, hills). 
4 Collect representative soil samples from each stratum, conduct C analyses on samples and 

quantify baseline SOCS for the CEA at some initial time. 
5 Quantify SOCS in same CEA at some later time (1–5 years after the initial time). 
6 Calculate SOCS change through time. 
7 Repeat steps 4–6 for times 2, 3, 4… (at 1–5-year intervals). 

Modelling is another approach that can be used to predict changes in soil carbon in response to 
changes in land use and management (e.g. Kirschbaum et al. 2017), and can provide rich information 
concerning the state and likely trend of SOCS. However, it is our view that currently there is not 
sufficient New Zealand data to parameterise models to confidently predict how SOC will change in 
response to changes in management for specific, individual farms across New Zealand (due to the 
diversity of climate, soil type and management regimes). However, SOCS data and modelling 
capability is rapidly increasing in New Zealand and this may be an avenue to pursue in the future.  

3 Summary of existing SOC benchmarking and monitoring 
systems 

Despite the importance of soil carbon, there are few functioning national, regional, or farm-scale soil 
carbon monitoring systems in place, and until recently few approaches were based on direct 
measurements of changes in SOCS over time. Here we provide a brief overview of some of the 
systems currently in place around the world to provide background and determine their strengths and 
weaknesses in relation to potential adoption/adaption for use at the farm-scale in New Zealand.  

3.1 United Nations Framework Convention on Climate Change (UNFCCC) 

In their review of proximal sensing for soil carbon auditing, England and Viscarra Rossel (2018) 
provide an overview of the policy and reporting instruments that are concerned with the topic of soil 
organic carbon accounting. In summary, the United Nations Framework Convention on Climate 
Change (UNFCCC), and later the Kyoto Protocol, set up a system of national communications and 
national inventory reporting to be compiled by parties and published by the UNFCCC. To estimate 
GHG emissions and to monitor changes in C stocks, including soil organic C, the International Panel 
on Climate Change (IPCC) developed a tiered methodology that relates data on land use and 
management activities to emissions and storage factors to estimate fluxes from the activities (IPCC, 
2006). The three-tiered approach depends on the scale, capability, and availability of data. Using the 
tiered approach, individual countries can interact with the required methods in the appropriate manner 
given the available information they have, to fulfil their reporting obligations. Such reporting 
obligations instigate efforts to develop policies and schemes that seek to reduce or offset emissions 
through a range of activities, including improved land management practices.  

Current IPCC inventory approaches are unlikely to be applicable at the farm scale because they use 
global or country-specific parameters that apply to broad classes of land use and/or climate. 
Moreover, where current IPCC methods use national data, the samples on which they are based were 
not designed to be used at the finer farm scale. However, Malone et al. (2018) showed that SOCS 
data and model predictions from New Zealand’s National Soil Carbon Monitoring system could be 
utilised to inform sampling design and intensity for farm-scale SOCS benchmarking. 
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3.2 Canadian systems  

As summarised by England and Viscarra Rossel (2018), in Canada, the Government of Alberta 
amended the Climate Change and Emissions Management Act (CCEMA) in 2007 to require industries 
with substantial emissions to report and reduce their emissions to established targets. There are three 
options to meet the targets, one of which is emission offsets. The Alberta Offset System operates 
under a set of standards, known as the ‘Offset Quantification Protocols and Guidance Documents’. 
The development of protocols involves the inclusion of expert engagement, rigorous peer review, 
defensible scientific methodologies, and documented transparency. Under the Alberta Offset Scheme, 
the Conservation Cropping Protocol quantifies SOCS change following changed land management 
from conventional cropping to conservation cropping (reduced tillage and summer fallow). The 
protocol uses Canada’s National Emissions Tier 2 methodology, which developed carbon 
sequestration coefficients (emission factors) based on measuring and modelling local crop rotations, 
soil/landscape types, and inter-annual climate variation for geo-specific polygons in the national eco-
stratification system.  

A second Canadian scheme in Saskatchewan, the Prairie Soil Carbon Balance (PSCB) Project was 
developed for quantifying and verifying the direct measurement of SOCS changes in response to a 
shift from conventional tillage to no-till, direct-seeded cropping systems (McConkey et al. 2013). It was 
not designed to monetize soil carbon offsets but has been supported by farm groups with an interest 
in securing financial recognition for GHG mitigation. A regional monitoring project was established to 
measure the temporal change in soil carbon storage under agricultural cropland on the Canadian 
Prairies (Ellert et al. 2001). The sampling scheme reported in Ellert et al. (2001) for monitoring was 
designed to maximize the ability to detect changes in SOCS over time by ensuring that exact sample 
locations can be relocated, limiting horizontal variability of SOCS. 

3.3 Australian systems 

In Australia under the Emission Reduction Fund, eligible emissions reduction activities are included in 
‘methodology determinations’, or ‘methods’ for short. Emissions reduction methods set out the rules 
for estimating emissions reductions from different activities. These methods ensure that emissions 
reductions are genuine – that they are both real and additional to business-as-usual operations. 

In relation to methods associated with soil carbon auditing, two are currently in use: 

1 The Carbon Credits (Carbon Farming Initiative—Measurement of Soil Carbon Sequestration in 
Agricultural Systems) Methodology Determination 2018 
(https://www.legislation.gov.au/Details/F2018L00089) 

2 Carbon Credits (Carbon Farming Initiative—Estimating Sequestration of Carbon in Soil Using 
Default Values) Methodology Determination 2015 
(https://www.legislation.gov.au/Details/F2016C00263) 

The 2018 method subsumes an earlier legislated method, Carbon Credits (Carbon Farming Initiative) 
(Sequestering Carbon in Soils in Grazing Systems) Methodology Determination 2014 (2014 method: 
https://www.legislation.gov.au/Details/F2014L00987). The 2014 method was based on the direct 
measurement of changes in soil carbon stock over time, in response to changes in grazing systems 
management. Collection and analysis of soil samples over time generate the data to estimate soil 
carbon stock change. The abatement activities covered by the 2014 soil carbon method are included 
within the scope of the 2018 method. However, the 2018 method can be applied to a wider range of 
agricultural systems than the 2014 method. The 2018 method was designed to enhance the ability to 
detect a temporal change in soil carbon stocks and potentially lower soil analysis costs by including 
additional methods of soil carbon analysis. Advancements in the 2018 method compared with the 
2014 method include: 

• an improved soil sampling strategy that can use information related to spatial variation in soil 
carbon stocks to stratify the area included in a project to reduce the uncertainty of soil carbon 
estimates and enhance the ability to detect management induced temporal changes;  

• an increased range of eligible farming systems including cropping, grazing and horticultural 
production systems; 

• allowing the use of soil amendments containing biochar; 

• allowing management activities involving the addition or redistribution of soil using mechanical 
means including clay delving, clay spreading or water ponding; 

https://www.legislation.gov.au/Details/F2016C00263
https://www.legislation.gov.au/Details/F2014L00987
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• an additional measurement option allowing for the ability to estimate carbon stocks using in-field 
or laboratory sensors and associated models as well as the combustion techniques; 

• a 10-year baseline period; and 

• use of a land management strategy, to be developed or reviewed by an independent person. 

 

The second method, Estimating sequestration of carbon in soil using default values (default value 
method), is based on the use of default rates for soil carbon stock change over time, in response to 
changes in specified management practices for cropping systems. These default values were 
predicted using simulation results obtained by applying the Full Carbon Accounting Model (FullCAM) 
developed for, and used in, the Australian National Greenhouse Gas Inventory.  

Before the 2018 method was introduced, a limited uptake of either the 2014 or default value soil 
carbon methods had been identified. There are several reasons for this, and a few are discussed 
here. The scope of the 2014 direct measurement method was limited to grazing lands and did not 
include cropping soils. The 2018 direct measurement method can be applied to a wide range of 
agricultural systems. With respect to the default value method, it only requires demonstration of 
adoption of well-defined changes in management practice and requires no actual measurement of soil 
carbon change. Although this made the method relatively inexpensive to implement, it was very 
restrictive in the definition of baseline conditions and what could be done during a project. These 
restrictions were required because the default values were modelled assuming such restrictions were 
in place. The decreased flexibility in future management practices that can be applied by land 
managers within a default values project has limited the development of projects of this type. It should 
also be noted that while these management activity-based methods are comparatively cheaper to 
implement than direct measurement methods (Conant & Paustian 2002), such methods present 
technical challenges considering the diverse combinations of climate, soil type and management 
regimes. As pointed out in de Gruijter et al. (2016), it is inevitable that not all combinations will be 
covered or parameterized and support for emerging managements will have a temporal lag in 
incorporation as data over time is required. At present there are approximately 17M tonnes of CO2 
equivalent (CO2e) contracted from soil-based projects running under the 2014 and 2018 methods. 

3.4 New Zealand systems 

Currently, national scale changes in New Zealand’s SOCS for mineral soils are quantified and 
reported using a relatively standard Tier 2 IPCC approach based on predicted gains/losses 
associated with changes in land use (McNeill et al. 2014). A simple Tier 1 approach is used for the 
small area of organic soils. These approaches are well established and provide useful estimates of 
changes in SOCS at the national scale. However, the system is not based on direct measurements of 
SOCS change over time, but rather relies on historical SOCS data that were collected over many 
decades and not with the intent of calibrating a national model (i.e. samples were not from randomly 
selected locations). The system also requires the assumption that SOCS remain constant if the broad 
land uses (e.g. high producing grassland) do not change, although recent evidence suggests that 
specific management regimes within high producing grasslands can impact SOCS (e.g. Mudge et al. 
2017). 

Key limitations of the current New Zealand soil carbon monitoring system could potentially be 
eliminated if direct measurements of SOCS change over time were made for different land uses or 
management regimes. Recently, McNeill et al. (2019) completed statistical analyses (based on 
historic SOCS data) to determine how many sampling sites would be required for monitoring to detect 
SOCS changes of different magnitudes for specified target areas within New Zealand’s managed 
agricultural land. Results revealed that a minimum of 377 monitoring sites established to represent 
the broad land uses and management regimes of Cropland (78 sites), Horticulture (92), Dairy (71), 
Drystock on flat-rolling land (76), and Drystock in hill country (60) would enable detection of SOCS 
changes of 2 Mg.ha–1 within each target area (on average across all sample sites), should changes of 
this magnitude occur between monitoring cycles (recommended to be 3–5 years apart). This analysis 
revealed that it is tractable to directly monitor changes in SOCS under broad land use and 
management regimes in New Zealand at the national scale. A subsequent project will explore how 
SOC sampling design can be optimised for synergies across multiple scales (e.g. national, industry 
and farm) and how the resulting data (and physical samples) can be stored, harmonised and shared 
efficiently for analysis, modelling and accounting purposes. 
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3.5 FAO-LEAP report 

The FAO-LEAP guidelines for ‘Measuring and modelling soil carbon stocks and stock changes in 
livestock production systems’ (FAO 2019) provide a set of requirements, recommendations, and 
options for the layout, sampling, and quantifying soil carbon stocks and stock changes, and also 
provides supporting discussion and examples of the likely effect of farm management (e.g. land use 
intensity, fertilisation) and climate (e.g. annual rainfall), on SOCS and stock changes. The guidelines 
cover standard direct soil sampling and modelling techniques, but also include sections on how to 
determine change in SOCS by quantifying the full carbon budget of a site (e.g. with the aid of the 
eddy covariance technique) and how changes in SOCS could potentially be integrated into life cycle 
assessment (LCA) of goods and services.  

The FAO (2019) direct soil sampling guidelines provide general advice concerning sampling design, 
but they do not prescribe a sampling scheme. For example, a pre-sampling of the area of interest is 
suggested to estimate the mean SOCS and variability, which can then be used to estimate the 
sample size, but other information can be used to determine the sampling effort, such as modelling or 
assumed values. While this provides some flexibility for a given farm to implement, there is a risk that 
different methods might produce different results. Moreover, the FAO (2019) guidelines suggest a 
sampling approach where the baseline SOCS is established at some date, and then the change is 
measured by repeating the measurements at the same site after a fixed time period (e.g. 5 or 10 
years). As pointed out by Lark (2009), this approach provides the best (i.e. most accurate) estimate of 
SOCS at the start and end of the measurement period but does not necessarily produce the best 
estimate of SOCS change. Slightly more accurate results can be obtained by regular measurements 
over the five or ten-year period, albeit with an increase in field effort (and therefore, cost). As a result, 
there is a risk that using FAO (2019) recommendations will produce an estimate of SOCS change that 
is less accurate but also less expensive than an approach designed to optimise accuracy. 

The full carbon budget approach based on the eddy covariance technique was deemed to be too 
expensive for routine monitoring and is largely used for research purposes and to calibrate/validate 
models (e.g. Kirschbaum et al. 2017). It was concluded that changes in SOCS could readily be 
incorporated into LCA once consensus on the methods for estimating and reporting changes was 
reached. 

3.6 VERRA 

VERRA’s ‘Verified Carbon Standard’ is the world’s most widely used voluntary GHG programme and 
has standards for quantifying different types of GHG emissions across many sectors, including soil 
carbon in agricultural systems (VERRA 2018). VERRA’s Soil Carbon Quantification Methodology 
(VM0021) was developed in 2012 and is part of a modular system with different modules providing 
specific methods for parts of the benchmarking and monitoring process such as determining project 
boundaries (VMD0020), stratification (VMD0018), quantifying soil carbon stocks (VMD0021) and also 
determining the net change in GHG emissions resulting from ‘project activities’ (VMD0035).  

In general, the VERRA soil carbon method (VM0021) follows similar methods to those outlined in FAO 
(2019) and the 2018 Australian method, but with a few notable differences. First, the VERRA method 
suggests taking separate soil samples for SOC and bulk density analysis, while the other two 
methods explicitly recommend that both these variables be determined on the same soil sample. 
VERRA also makes no provision for use of newer sensor technologies, while there is a requirement to 
have permanent sampling plots marked with an in situ relocatable marker (i.e. metal stake). Overall, 
the VERRA Soil Carbon Quantification Methodology (VM0021) provides a relatively robust system to 
quantify changes in SOCS and net GHG emissions associated with implementation of a new land 
management ‘project’ and provides a pathway to potentially acquire ‘voluntary’ carbon credits should 
New Zealand farmers want to pursue this option.  

3.7 Conclusions – guiding principles for NZ farm-scale design  
• Both Canadian systems have a cropping focus that differs from this report, which is focussed on 

pastoral systems 

• We believe there is insufficient data available in New Zealand to parameterise a model (e.g. the 
Alberta Offset System or the FullCAM model in Australia) for accurate prediction of changes in 
SOCS for specific individual farms across New Zealand (due to the diversity of climate, soil type 
and management regimes).  
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• Direct measurement methods are generally preferable because of their flexibility to account for 
emerging management practices at the farm scale, independence of established management 
assumptions relating to carbon fluxes, provision of site-specific information to the landholder and 
the generation of robust data pertaining to SOCS change. However, implementation costs will 
likely be higher than modelling approaches (see section 5.6). 

• The direct SOCS measurement systems outlined in the FAO, VERRA and Australian 2018 
methods are all similar. For example, all require stratification of the project area and follow 
relatively standard methods for soil sampling, processing, and data analysis.  

• We believe the Australian 2018 methodology is the most relevant to farm-scale SOCS 
measurements in New Zealand and is robust, having been implemented in national 
legislation and well supported by recent literature. Based on this assertion we use the 
Australian 2018 method to guide the approach recommended in New Zealand, while at the same 
time considering the FAO 2019 and VERRA methods, plus other literature, and any unique issues 
specific to New Zealand conditions. 

• We will also endeavour to condense the recommended approach into a succinct summary so 
farmers, rural professionals and industry representatives can quickly get an idea of what is 
required for SOCS benchmarking and monitoring.  
 

4 Technical discussion of options for SOC benchmarking and 
monitoring at farm-scale 

This section provides a technical description and discussion of the issues and options for farm-scale 
SOC benchmarking and monitoring. The description first looks at the measurement aspects 
underpinning the quantification of soil carbon stocks. Second, the sampling aspects of a soil carbon 
auditing project are summarised. Most sections have a very brief summary outlining the key points 
and recommendations which will be included in Section 5.  

4.1 What are we measuring? 

Using relatively simple notation adapted from Poeplau et al. (2017), and also adapted into the 
Australian 2018 method, SOCS at a specific point can be measured using the following equation: 

 

SOCstock = SOCconc, fine soil × BDwhole soil × Thickness × (1 − MassFractiongravel) Equation 1 

 

SOCstock is the SOCS of the investigated soil over a given soil thickness. The units of SOCstock are 
conventionally in Mg C ha-1 to a given fixed depth or a specified cumulative mass of soil (more on this 
further on). SOCconc,fine soil is the gravimetric content of SOC in the fine soil expressed on an oven dry 

equivalent basis (%), where the fine soil refers to all dried and ground soil material of the collected 
sample that passes through a 2 mm sieve. BDwhole soil is the corresponding dry bulk density of the 

whole soil, and MassFractiongravel corresponds to the mass fraction of the sample that does not pass 

through a 2 mm sieve (i.e. the gravel and rock fraction). Note that this equation negates the need to 
estimate both the volume fraction of the gravel and rocks, and the bulk density of the fine soil fraction. 
If we were to measure these then SOCstock would be measured using: 

 

SOCstock = SOCconc, fine soil × BDwhole soil  × Thickness × (1 − rock fragments fraction) Equation 2 

 

where 𝐵𝐷𝑓𝑖𝑛𝑒 𝑠𝑜𝑖𝑙 is calculated using the following equation: 

 

BDfine soil =
masssample−massrock fragments 

𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒− 
𝑚𝑎𝑠𝑠𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

𝜌𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

  Equation 3 
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𝑚𝑎𝑠𝑠𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑚𝑎𝑠𝑠𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 correspond to the total masses of the oven dried sample, and rock 

fragments respectively. 𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒 is the total volume of the sample (cm3), and 𝜌𝑟𝑜𝑐𝑘 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 is the 

rock fragments density which is commonly found to be 2.65 g cm–1. Of course, measurement of rock 
density could be considered, where methods involving the use of a hydrostatic scale (which is based 
on Archimedes principle) could be used instead of settling with the common value of 2.65 g cm–1 
(Mehler et al. 2014). 

A simplification of Equation 1 and 2 as shown in Poeplau et al. (2017) is: 

 

𝑀𝑆 =
𝑚𝑎𝑠𝑠𝑓𝑖𝑛𝑒 𝑠𝑜𝑖𝑙  

𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒

× 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 

 

𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 = 𝑆𝑂𝐶𝑐𝑜𝑛𝑓𝑖𝑛𝑒 𝑠𝑜𝑖𝑙 × 𝑀𝑆  Equation 4 

 

where MS here is the fine soil mass (< 2 mm) in Mg.ha–1. 

 

Equations 1, 2, and 4 assume that the SOCconfine soil is expressed on an oven-dry equivalent basis 
where the value derived by the analyser has been corrected for water content (𝜃𝑚) of air-dried soil, 
otherwise the full equation becomes: 

 

𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘 = (𝑆𝑂𝐶𝑐𝑜𝑛𝑓𝑖𝑛𝑒 𝑠𝑜𝑖𝑙 × (1 + 𝜃𝑚)) × 𝐵𝐷𝑤ℎ𝑜𝑙𝑒 𝑠𝑜𝑖𝑙 × 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 × (1 − 𝑀𝑎𝑠𝑠𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑔𝑟𝑎𝑣𝑒𝑙) 

Equation 5 

 

For reference, the following version of the above equation also gives all the units and correction factor 
for units 

 Equation 6 

 

4.1.1 Fixed depth vs. Equivalent Mass 

Historically, SOCS have been quantified to a fixed depth. For example, the common reporting depth 
as set by Intergovernmental Panel on Climate Change (IPCC, 2006) is 0–30 cm. Such fixed-depth 
practices are in place throughout the world. It is widely accepted now that using fixed depths from an 
auditing standpoint is problematic because changes in management (or any other change in the 
system) may change the soil bulk density that in turn will lead to different soil masses if a fixed depth 
is used (von Haden et al. 2020; Wendt & Hauser 2013). Basically, there is no correspondence in 
comparing SOCS values based on different soil masses. If pursued in this way, such comparisons will 
lead to misleading reporting of improved or lost SOCS when in fact the opposite may be true or there 
has been no change at all. Using the equivalent soil mass (ESM) approach largely solves this issue.  

ESM can be derived by adjusting SOCS based on changes in bulk density (see example at: 
https://www.agric.wa.gov.au/soil-carbon/measuring-and-reporting-soil-organic-carbon). This method 
would work if there is an increase in bulk density, where the depth of soil required for ESM for the 
follow up round of sampling would be less than that at the previous round of sampling. If bulk density 
has decreased however, a bulk density correction would give misleading outcomes because the 
measured soil carbon only corresponds to the depth of measurement and not actually to the ESM. 
The Australian 2014 method demonstrates a practicable approach to avoiding this issue, where an 
ESM is selected after the sampling has occurred to a set depth. In this case, sampling is conducted to 
30 cm and soil masses of all the collected samples are determined, followed by a setting of the ESM 

https://www.agric.wa.gov.au/soil-carbon/measuring-and-reporting-soil-organic-carbon
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which was determined to be the lower 10th percentile of all soil masses. This ensures that in 90% of 
cases, no extrapolation of SOCS occurs on unmeasured soil material. If the mean of the ESM was 
used, then 50% of the samples would be subjected to extrapolation which is not a desirable outcome. 
Once the ESM is set, estimation of SOCS ensues for each depth that is then corrected for the ESM. 
These correction equations are detailed in the 2014 method.  

Alternatively, the SOCS at the given ESM can be achieved by fitting a depth function such as a cubic 
spline through the corresponding soil masses and SOCS that were measured at given depth intervals 
(see figure 2, Wendt & Hauser 2013). Implementing such a method will therefore require several 
measurements to be made in sequential depth increments in order to fit an appropriate cubic spline 
function. This could be a barrier where for cost and efficiency no more than two depths are sampled 
for SOCS measurement.  

Summary:  

1 Soil carbon stocks should be calculated on an equivalent soil mass (ESM) basis.  
2 An ESM should be set after the initial baseline sample, and a conservative target is set (10th 

percentile) that is then adhered to throughout the life of the monitoring program.  

 

4.1.2 Estimation of spatial mean SOC stock 

If the aim is to measure the mean SOCS in a farm, then in most cases we are not interested in SOCS 
at one point in the landscape, but rather the spatial mean SOCS over some extended area (the CEA, 
such as a paddock, farm block or whole farm). Direct measurement of SOCS therefore requires some 
form of representative sampling from within the CEA. In this sense, a representative sample is 
designed to accurately reflect the characteristics of the wider CEA. For instance, if a whole farm is 
being sampled, then points from all over the farm are required covering the range of terrain and land 
use that are likely to be encountered.  

There are two general approaches in sampling: design-based and model-based (Brus & de Gruijter 
1997; de Gruijter et al. 2006). Design-based sampling is ideal for deriving global estimates, which for 
soil carbon auditing is the mean soil carbon stock in a CEA. In design-based systems, sampling 
locations are selected by probability sampling (random sampling with known inclusion probabilities), 
and the inference associated with these data (estimation of stocks) is based on the sampling design 
process used to select the sampling locations. Model-based sampling on the other hand is useful for 
applications where one may want to create a map of soil carbon stocks across a CEA. The main 
priority in model-based sampling is to select samples that optimise some criteria such as minimisation 
of a kriging variance, optimising spatial or geographical coverage (or both), each of which adds an 
element of purposiveness to the exercise, and thereby excludes design-based inference using this 
approach. Despite these limitations in model-based sampling, design-based sampling can be used for 
model-based inference, such as for mapping. According to Viscarra Rossel et al. (2016) there is no 
published literature on sampling methods that are designed for both design- and model-based 
estimation. 

Sampling site placement  

Once a general approach to sampling has been adopted (design- or model-based), a method of 
determining the actual spatial placement of sampling locations needs to be considered. The key 
requirement is that sample locations are chosen by random selection rather than purposefully 
selected for convenience. Random selection of soil sampling sites ensures that SOCS estimates are 
unbiased.  

It is possible to randomly allocate sampling sites over the whole CEA (e.g. a farm), but this is only 
likely to be a useful approach if the distribution of SOCS is homogenous over the CEA. It is more 
likely that some areas of the farm will have higher SOCS while others will have lower values 
depending on soil topography and land management. For example, Figure 1 shows the distribution of 
0–10 cm SOCS by soil order (from the New Zealand Soil Classification), showing that Allophanic soils 
generally have higher SOCS when compared with Brown soils. If a CEA with both Allophanic and 
Brown soils needed to be sampled, combining these two soil orders would require more samples (i.e. 
the sampling would be of lower efficiency) than if the Allophanic and Brown soils were sampled 
separately. For this reason, the first step before sampling is to decide whether stratification of the CEA 
is required, and if so what the basis for stratification should be (e.g. by soil type, slope class and 



 

Ministry for Primary Industries Design of an on-farm soil carbon benchmarking and monitoring approach for individual pastoral farms • 11 

management). If performed appropriately, stratification will lead to higher precision of mean SOCS 
(lower sampling variance), and lower cost of estimation when compared with random sampling 
without stratification. In practice, the degree of stratification that is used is likely to be a compromise 
between many strata to represent all possible factors important in a CEA, and the additional effort 
required to sample each of the adopted strata. Options for stratification are discussed in Section 
4.3.1. 

Once the degree of stratification has been decided, each stratum must be sampled using some form 
of random sampling approach. The simplest method of probability sampling within a stratum (de 
Gruijter et al. 2016) is to use Simple Random Sampling (SRS), where a fixed number of sample points 
is drawn at random and independently from each other within the stratum. When combined with 
stratification, this sampling scheme becomes stratified simple random sampling (StSRS). 

In the simple case where there is no stratification of the CEA, the sampling scheme reduces to simple 
random sampling (SRS) of the whole target area. We note that SRS without any stratification is 
seldom used in practice, since SOCS tend to vary by slope class and by soil type, for instance, so 
there is generally some advantage in stratification. 

 

Figure 1: Violin plot of the 0–30-cm soil carbon stocks over New Zealand grassland soils, grouped by soil order 

from the New Zealand Soil Classification. The width of the violin plot shows the relative size of the distribution of 

soil carbon. 

 

StSRS of a CEA has lower efficiency when compared with other possible sampling methods, but the 
method is easy to understand, simple to implement, and widely used. StSRS is the approach adopted 
in the Australian 2018 Method, where it is compulsory to have at least three strata and a minimum of 
three samples from each stratum. However, it is indicated that the use of additional strata and 
collection of additional samples would be beneficial.  

One disadvantage with using StSRS is that the selection of samples does not consider the presence 
of other nearby samples, so there is a tendency for samples to be closely spaced, and the CEA is less 
efficiently covered (McNeill et al. 2018). Another general approach to sampling within each stratum is 
to force the random samples to be spread across the stratum so that all areas within the stratum are 
covered, while still maintaining randomness. This general class of methods is known as balanced 
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sampling methods. Two common balanced sampling methods are Generalized Random Tessellation 
Stratified sampling or GRTS (Stevens & Olsen 2004) and Balanced Acceptance Sampling or BAS 
(Robertson et al. 2013). Combining balanced sampling with stratification produces stratified balanced 
sampling. 

Another common method of spatial sampling is to generate a regular or systematic grid and retain 
samples where they happen to lie within the stratum. This method (grid sampling) is simple to 
understand, since all that is required is a random starting point and selection of the regular sampling 
distance. However, the method has several important disadvantages: 

1 Grid-based sampling selects points based on a random initial point and an adopted grid sampling 
distance. This approach is incompatible with the design-based sampling approach that we 
advocate (de Gruijter et al. 2006).  

2 Since grid sampling cannot have two points located closer than the grid sampling distance, this 
method of sampling cannot recover SOCS at a spatial scale finer than the size of the sampling 
grid. 

For the above reasons, we do not recommend systematic or grid sampling. An example of four 
common stratum sampling methods is shown in Figure 2, where 100 samples are allocated within a 
single stratum using SRS, GRTS, BAS, and systematic or grid. These examples can be easily 
expanded to cover more than one stratum. 

 

Figure 2: Example of spatial sampling of a single stratum with 100 samples using simple random sampling, two 

variants of balanced sampling (GRTS and BAS), and systematic or grid sampling. 

 

Once the degree of stratification has been decided, the choice between SRS, balanced sampling, and 
other approaches represents a pragmatic compromise between efficiency, ease of understanding, 
and practicality. There is no doubt that SRS is the easiest method to understand, but it has lower 
efficiency compared with other methods. Variants of balanced sampling tend to be highly efficient 
(Benedetti et al. 2017), especially for small sample sizes, but balanced sampling is more conceptually 
difficult to describe. The cost of the field effort required to estimate SOCS to a specified accuracy is 
broadly proportional to the number of field samples, and the number of samples required is also 
inversely proportional to sampling efficiency (i.e. a more efficient sampling scheme requires fewer 
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samples to achieve a pre-specified estimated SOCS accuracy when compared with a less efficient 
scheme). 

Summary: 

1 Design-based approaches are the simplest and most common approach used for SOCS 
benchmarking (measuring mean SOCS) and monitoring (measuring SOCS change). 

2 Stratification will likely increase the accuracy of mean SOCS estimates within a CEA (i.e. for 
benchmarking), but the degree and type of stratification depends on the farm. Examples include 
stratification by different combinations of landform, slope class, soil order and management. 

3 In terms of specific sampling site placement within a stratum, simple random sampling (SRS, or 
StSRS within stratification) is the simplest and most flexible method, but balanced acceptance 
sampling will be more efficient, although slightly more complicated. 

4.1.3 Analysing individual vs composite soil samples  

Once stratification and the method to determine sampling site locations are determined, there are two 
ways of deriving an estimate of the spatial mean SOCS: single samples, and composite or bulked 
samples. The primary purpose of compositing is to reduce the number of samples that need to be 
analysed (reducing laboratory costs), while still capturing the spatial variability of SOCS in the 
estimate of the spatial mean. However, in addition to estimating the spatial mean, one also wants to 
know the variance about that estimate to be able to communicate the certainty of the estimate. If all 
samples collected randomly from within a stratum sample are bulked, that effectively leaves only one 
sample to measure from the stratum, and therefore no way to derive a measure of variance. 
Therefore, more than one composite sample is essential, and these are formed by bulking an equal 
number of randomly selected (pre-chosen) samples, either within or across strata. Bulking within 
strata is where short range variability can be dealt with where soil samples within an area are 
collected then composited (Lark 2012). Within a stratum, several composited samples are collected 
and can be treated as either individual samples or used as further composites across strata.  

As pointed out in de Gruijter et al. (2016), bulking (compositing) is a common practice in sampling for 
soil testing, with the basic assumption that soil carbon is additive and analysing a bulk sample gives 
the same mean result as averaging the values of the individual samples. Bulking across evenly sized 
strata has been proposed for probability sampling in SOCS estimation by Chappell et al. (2013), 
which contributed to the recommendations from the Australian 2014 Method. However, it is important 
to note that one of the criteria of the 2014 method was that it could be applied without any prior 
knowledge of the spatial distribution of SOCS across the area. In the Australian 2018 method, the 
requirement of compositing soil samples was relaxed to additionally include auditing using individual 
samples to be collected from unequal area strata formed on the basis of prior information indicative of 
the spatial variation in SOCS.  

One major advantage of analysing individual samples separately is that the resulting data can be 
used to refine stratification and sample numbers for subsequent sampling rounds, provided there are 
sufficient samples to do so. For example, based on prior SOC data for a farm, de Gruijter et al. (2016) 
calculated that 127 was the optimal sampling number (based on costs and potential returns from SOC 
sequestration), but after re-stratifying based on data from 50 points for the baseline sampling, only 22 
sampling sites were required to achieve the same result. de Gruijter et al. (2016) point out that one 
advantage of compositing is cost reduction, and at the same time pointed out disadvantages related 
to an increase the contribution of measurement errors to the total and that fact that sample sizes (total 
and within strata) can no longer be chosen freely. For example, in a hypothetical case of compositing 
across 10 strata, the total sample size must be a multiple of 10. This implies that the sampling 
variance cannot be minimized as effectively as in non-composite sampling. A few other technical 
disadvantages were identified, but de Gruijter et al. (2016) firmly believed that once sampling and 
measurement costs and then the measurement errors of spatial variability of SOC were taken into 
account, the advantages of compositing do not outweigh the possible disadvantages. In section 5.4.5, 
we provide the relevant equations for estimation of spatial means using both individual and composite 
samples.  

Summary:  

1 If resources (i.e. time and money) are not limited, it is best to not composite samples, because 
this provides the richest and most flexible data.  
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2 If resources are limited, analysing composite samples will likely be the best option. However, 
there is likely to be a trade-off between reduced costs in the first sampling round against the 
potential reduction in sample numbers in subsequent rounds due to refined sampling design if 
individual samples are analysed.  

3 Section 5.6 provides cost estimates for the two different options 

4.1.4 Sampling in both space and time 

Incorporating the temporal component into a benchmarking and monitoring program necessitates not 
only addressing the question of where to sample, but also when. Or in other words, some form of 
space-time sampling is required. From a monitoring perspective, landholders could potentially be 
credited for positive increases in stocks from their established baseline stocks. Intuitively and perhaps 
naively (without considering spatial and temporal correlation between sample times), one would want 
to establish around three measurement time points (inclusive of the baseline) where stocks are 
measured before establishing a linear trend line to quantify the rate of SOCS increase (or decrease). 
Building on this intuition, two time points would allow one to establish an initial estimate of change, 
and perhaps a coarse estimate of trend, but with three or more time points, one is able to estimate the 
trend with better precision. As established in de Gruijter et al. (2006), there are several basic types of 
space-time designs. We will discuss a few of these that are relevant to SOCS monitoring in Section 
4.3.3, but it is important to note that sampling to estimate the spatial mean through time and to 
estimate the temporal trend are differing goals that warrant perhaps different space-time or hybridised 
space-time sampling approaches to achieve each in an optimal sense (Brus & de Gruijter 2011, 2014; 
Chappell et al. 2013). 

4.2 Specific measurement details 

This sub-section will provide a short summary of the analytical methods available for the 
measurement of the components used to estimate SOCS: soil carbon concentration and bulk density. 
Although not explicitly required we also discuss the methods for measuring rock and gravel content.  

4.2.1 Soil carbon concentration 

Soil carbon concentration can either be directly measured or inferred using spectroscopy techniques 
that rely on a calibration relationship to be formed between direct measurements and the associated 
spectra of samples. The most common spectroscopy techniques for SOCS acquire spectra within the 
visible, near and mid-infrared regions of the electromagnetic spectrum.  

Several analytical approaches to soil carbon estimation exist and can be distinguished as either wet 
or dumas oxidation methods. Wet oxidation methods include the Walkley-Black method (Walkley and 
Black 1934) and its derivatives (Heanes 1984). Dumas oxidation or dry combustion methods use 
purpose-built analysers such as those manufactured by LECO (https://www.leco.com/) or Elementar 
(https://www.elementar.de/en.html). There are relative advantages and disadvantages to each 
analytical method (Nelson & Sommers 1982), although Conyers et al. (2011) recommended against 
using Walkley-Black due to measurement variability issues, but found the Heanes and Leco methods 
to be equivalent in their capture of SOC. The Dumas oxidation methods also capture the inorganic 
component of soil C, whereas the Heanes method does not. Therefore, for Dumas oxidation pre-
treatment of carbonate containing soils is required to remove the inorganic C from the soil samples 
before analysis to measure only SOC. From a practical viewpoint, dumas methods are preferred over 
wet oxidation methods because they are procedurally simpler and require less interaction with 
potentially dangerous chemicals. 

Increasingly, alternative ways to estimate soil carbon concentration are being developped (Smith et 
al., 2020). Some expansive reviews on the use of visible near- infrared spectroscopy to predict soil 
properties and, in particular, soil carbon concentration exist, with important contributions being Bellon-
Maurel and McBratney (2011), Soriano-Disla et al. (2014), and Viscarra Rossel et al. (2006). 
Recently, mid-infrared spectroscopy has also been suggested (Baldock et al, 2014, Dangal et al, 
2020). The accuracy of these methods to predict soil carbon concentration is contingent upon the 
quality of the calibration model and the validity of the contributing datasets (spectral libraries) that 
went into constructing the model. While a soil spectral inference model could exhibit high predictive 
skill based on goodness-of-fit statistics with reference to the model calibration data and even an 
independent validation dataset, if the spectral library used for calibration does not represent the local 
variability of soil carbon in the target universe, one will incur misleading values, and ultimately a high 

https://www.leco.com/
https://www.elementar.de/en.html
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difficulty in assessing whether SOCs are increasing or not. The scanning protocol, spectral library and 
chemometric procedures are key to prediction, and the relative advantages of ‘globally’ calibrated vs 
‘locally’ calibrated spectral inference models is widely discussed (e.g. Lobsey et al. 2017). Method 
development in the local calibration model from large spectral libraries (e.g. Ramirez-Lopez et al. 
2013, Shi et al. 2015) provide compelling insights and evidence to indicate that global models often 
fail to capture accurately the local, site-specific characteristics of soil. The Australian Govt 2018 
method is cognisant of this issue and stipulates that spectrally inferred SOC estimates be derived 
from locally calibrated models. For example, the method states that it is a minimum data requirement 
to have either, a) 40 soil samples with spectra when the total number of samples in an auditing area is 
≤ 200 or, b) 20% of the total number of soil samples with spectra in an auditing area when the total 
number of samples in an area is ≥ 200. Alternatively, a combinatorial approach using both local 
spectral libraries as well as spectra extracted from compiled libraries for more robust predictions. An 
algorithm such as the RS-Local (Lobsey et al. 2017) is an example of one such method that exploits 
this combinatorial modelling approach.  

The type of spectroscopy used also has a dramatic effect on the prediction performance. Mid-infrared 
spectroscopy typically yields superior results, and with a large enough library can challenge the 
reference measurement techniques (Dangal et al, 2020). Visible near-infrared, while still quantitative, 
has higher levels of uncertainty associated with its predictions. However, the processing costs 
associated with Vis-NIR are much lower than those required for MIR. Recently, authors have also 
suggested both approaches can be combined (Ng et al., 2019). 

Soil matrix effects, and soil moisture are a source of heterogeneity that if not contained will affect the 
quality of soil spectral predictions (Ge et al. 2014, Roudier et al. 2017). Managing these issues is 
largely dealt with by drying the soils and grinding then to a consistent size fraction, then subjecting the 
samples for infrared analysis in a controlled laboratory setting. The popularity of soil infrared 
spectroscopy is largely built around the experience that such techniques are more efficient in time and 
cost terms than traditional wet chemistry measurements. Taking the instruments into the field is yet 
another time- and cost-saving idea, and method development in this space continues to evolve to 
address the issues that affect the quality of measurements (e.g. variations in soil water content, matrix 
effects). In particular, methods such as external parameter orthogonalisation (Minasny et al. 2011) 
and direct standardisation (Ji et al. 2015) that were designed for other purposes, can be adapted to 
soil spectral model inference applications, to correct for or remove the attenuation affect that water 
imparts on collected infrared spectra of soil. Of course, the capability to achieve such a transformation 
or standardisation is contingent on purpose-built soil spectral libraries, where spectra have been 
collected from soil in both field and air-dried/ground conditions. If such standardisation is possible, 
then commissioning spectral libraries that have been built using air dried/ground soils can be used for 
spectral inference of soil properties on soils in their field condition. By all accounts, treatment of the 
field-collected spectra, to make them appear as if they were collected in a laboratory setting, does 
result in improved predictions of soil properties (Minasny et al. 2011).  

Despite the potential benefits of Vis-NIR infrared spectroscopy and its potential adaptation specifically 
in a SOC auditing and monitoring programme, widespread adoption has yet to be realised outside 
research institutions in Australia, although in New Zealand commercial laboratories are  employing 
these techniques. Research into field application of these measurement instruments is also 
accelerating e.g. (Hedley et al. 2015, Roudier et al. 2015, Viscarra Rossel et al, 2017). There are 
continued developments that suggest we are at the beginnings of operationalisation and mainstream 
application. First, in regard to the technology, there are more manufacturers in the game, which, 
together with lowering component costs, means business competition will increase, leading to a 
decrease in capital investment costs for the end-user (Tang et al., 2020). Second, the continued 
developments in portability and robustness of the technology will ensure a reasonable life span and 
robustness needed for in-field applications. Moreover, the miniaturisation of the technology will see 
more units manufactured at cheaper costs and on-boarded with existing technologies such as mobile 
phones and generic sensing probes (McLaughlin et al. 2017; Wang et al. 2019). All the while, 
continued improvements in computation, modelling, and data processing, in particular from the soil 
science and soil spectroscopy, together with the building of representative soil spectral libraries, show 
great potential for future adoption of these methods. 

4.2.2 Bulk Density 

As is well practised and established, a known volume of soil is extracted using a coring device, then 
the oven dried mass of that soil divided by the volume of the core will provide a measure of bulk 
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density that is expressed in terms of g/cm3 or Mg/m3. Relative to other measurable soil properties, 
bulk density is much less frequently measured (Searle 2014) due to the time and effort necessary to 
perform the measurement, particularly at some depth below the soil surface, as this would generally 
require a significant amount of excavation to be able to insert and extract the soil coring implement.  

Hydraulic and mechanical coring machines can generally insert a probe to a depth of 1m or more 
without the need for soil excavation. Segments of the soil core can then be measured for bulk density 
via the conventional method. While this approach is from experience, an efficient method, estimates 
of core volume are difficult to control, particularly when working in dry and crumbly soils, which can 
obviously lead to imprecise estimates (Malone et al. 2018). There is also anecdotal evidence to 
suggest that such forceful probe penetration will inadvertently compress the soil from its otherwise 
original condition, particularly in loamy and clayey soil at the wetter end of available water content, 
leading to inaccurate estimates of bulk density. Despite this however, the ESM approach will deal with 
this issue for most soils.  

Soil spectral inference modelling has been demonstrated to be an efficient way to estimate bulk 
density (Moreira et al. 2009). The spectral modelling workflow for bulk density is the same as it would 
be for any other target soil variable. However, there is some apprehension about spectrally inferring 
such soil physical quantities as there is no direct relationship between, in this case, soil density and 
the absorbance features of a given soil spectrum (Minansy et al. 2008). Rather it is more likely that 
good spectral model results are the outcome of exploiting established indirect relationships between 
bulk density and soil properties such as soil carbon content, soil texture, cation exchange capacity, 
and to some extent the clay mineralogy, which we know can be quite well estimated via soil spectral 
inference. In that regard, the implementation of pedotransfer functions (Bouma 1989) may offer a 
workable solution to efficient measurement of bulk density as demonstrated in Tranter et al. (2007), 
Benites et al. (2007), and Rodriguez-Lado et al. (2015).  

Non-destructive approaches for bulk density measurement include gamma radiation attenuation 
methods (Davidson et al. 1963). Purpose-built instruments, such as that used by Holmes et al. (2012), 
are internally calibrated and provide direct measures once corrections are made to remove the 
attenuating effect of soil moisture. Lobsey et al. (2016), developed a bulk density sensor using the 
principals of gamma radiation attenuation. They manually estimated mass attenuation coefficients of 
soil and water, and developed an independent measure of soil moisture based on vis-NIR spectral 
inference. With all the required attenuation information, they were able to predict bulk density. In 
Holmes et al. (2012), the limitation of this technique was the depth of penetration, which had a 
maximum is 30 cm. Such instruments are commonly used in engineering and road building 
applications. While their adoption for the method for SOCS measurement concluded that the non-
destructive approach makes the effort of bulk density estimation much easier to achieve, the limitation 
of depth needs resolving if auditing and monitoring is required beyond 30 cm. The technique 
proposed in Lobsey and Viscarra Rossel (2016) gets around this technical issue. Finally, the 
performance of these non-destructive techniques in soils containing high amounts of coarse 
fragments was only really addressed in Holmes et al. (2012), who conclude that in soils with >20% 
volume proportion of coarse fragments, soil bulk density estimates can be quite uncertain. However, 
they concluded, at least in their study area, that most of the uncertainty of SOCS estimation was 
dominated by uncertainty related to measurement of soil carbon concentration, and bulk density 
uncertainty contributed only a small amount to the overall uncertainty.  

4.2.3 Coarse Fragment content 

For estimation of SOCS, coarse fragments are removed entirely from the collected sample so that 
SOC concentration measurement only deals with the fine soil fraction.  

Coarse fragments are any materials that do not pass through a 2-mm sieve, and can include both 
plant root and rock, sand, and gravel materials. It is generally reported that the density or specific 
gravity of rock materials is 2.65g/cm3 and for plant roots it is close to 1g/cm3. Note that for the above 
equations, plant roots are not explicitly accounted for, but can easily be done by inserting the 
respective terms, as they are for dealing with the coarse fraction.  

A possible solution, at least in terms of addressing the labour intensity involved in the recovery of 
coarse fragments from a core of soil, was proposed in Viscarra et al. (2016). They developed a 
modular core sieving system to enable rapid wet-sieving of soil cores. Using manual weighing and 
image analyses techniques, they were able to report on rock fragment proportions more efficiently 
than would have been achieved using a conventional recovery approach. This work appears to be still 
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in a research phase, but it represents the first known attempt to make more efficient and automate 
what continues to be a rate limiting task in SOCS measurement. 

Ultimately, gravel only becomes an issue when spectral predictions underpin the derivation of SOCS. 
This is largely because calibration models for SOC content are based on the fine fraction of soil. If 
scans are being done in the field, it would become a big issue when gravel reaches a content where it 
potentially dominates the window of the NIR scan. Some more consideration to this issue needs to be 
given as it largely seems unsolved.  

 

Summary:  

1 At present we recommend using standard laboratory procedures for determining fine soil mass (< 
2 mm), coarse fraction content (gravel/stones) and soil carbon content (see Section 5.4 for 
details).  

2 However, sensor techniques are evolving rapidly and provision for their use (subject to strict 
quality control measures) are already included in the Australian Government 2018 and FAO 2019 
methods. 

4.3 Sampling design for on-farm SOC monitoring  

This section will deal exclusively with the ‘where’ (location) and ‘when’ (time) components of SOCS 
benchmarking and monitoring. The location component, as summarised earlier, involves design-
based sampling and inference, and involves consideration of stratification variations, the intensity of 
stratification and the intensity of sampling. The time component is the consideration of sampling 
strategies to detect changes and the trend of SOCS. To some degree, when to sample is largely 
governed by the existing land management practices and the interaction between edaphic properties 
(i.e. properties influenced by the soil) and recent weather (e.g. soils with high clay content exposed to 
significant rainfall). This means that at some periods of the year it may not be possible to get into field 
to sample. Similarly, SOCS varies between seasons, so it is important to take measurements within a 
specified window of time to avoid confounding of the SOCS measurement with seasonal variation. 
These seasonal factors mean that synchronous sampling through time is most suitable for SOCS 
monitoring.  

4.3.1 How many samples and how many strata? 

A practical question when deciding to monitor soil carbon on a farm is: how many samples will be 
needed to detect a specified change of soil carbon in the future? Prior information concerning the 
distribution of the mean level of soil carbon on the farm is needed to answer this question. In other 
words, it is impossible to estimate the required sample size without knowing something about the 
distribution of soil carbon for the farm. 

If all farms in New Zealand were the same, then one set of samples (e.g. from a research farm) would 
suffice to give estimates for the sample size. However, soil carbon for different farms can differ widely 
in the overall mean level as well as the variation around that mean level. Therefore, prior information 
concerning the soil carbon distribution must be inferred by carrying out a preliminary field effort to 
gather some samples of soil carbon in representative locations over the farm. We call this a pilot 
study. The principal assumption made in this approach is that the distribution of the SOCS derived 
from the pilot study will be the same (or at least, very similar to) the distribution of the “true” (but 
unknown) soil carbon distribution over the farm. In practical terms, this assumption means that 
samples for the pilot study must be randomly spread all over the farm – preselecting the sites on the 
basis of convenience could lead to a biased estimate of the mean soil carbon for the farm. 

How many samples? 

The total numbers of samples to take from the CEA is conventionally determined as the largest 
number that can be afforded. While affordability is a considerable driver of decision making, if not 
enough samples are taken to provide a reliable estimate of the mean SOCS or the change in mean 
SOCS, the resulting data may be of limited value. Therefore, a key determinant of the number of 
samples required is the accuracy or confidence with which the SOCS and stock change needs to be 
known. This can only be determined by the landowner/manager, but as a general rule, we believe that 
designing a system whereby repeat measurements of SOCS could detect a change of 2–5% (should 
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such a change occur) would be a good starting point. A 2–5% change in SOC corresponds to a 
change of about 2 or 5 Mg.ha–1 for the top 30 cm of New Zealand’s agricultural soils. 

A good understanding of the spatial variation of soil carbon is invaluable information to get a sense of 
how many samples will be needed. There are two different types of problem relevant here: 

1. If only a pilot study has been carried out, this will provide an estimate for the mean and 
standard deviation of SOCS for a small number of samples (perhaps 5–15). Using this 
information, plus some key assumptions concerning the variability of changes in soil carbon, a 
power calculation can be used to estimate the number of samples that will be required to 
detect a pre-specified change in soil carbon stocks. The basis for the power calculation is 
described elsewhere (Cohen 1988, Bain and Engelhardt 1992). Standard software provides 
appropriate methods, or a statistical calculator can be used (Faul et al. 2007). 

2. If a set of soil carbon estimates has already been gathered from two different dates for a 
specified number of sites, perhaps because of historical surveys, then a power analysis is not 
relevant. The issue in this case is to determine the change in soil carbon stocks that can be 
detected using the paired set of samples. The common statistical tool for achieving this is by 
estimating the Minimum Detectable Difference (MDD), which is the smallest detectable 
difference between means when the variation, significance level, statistical power, and 
sample size are specified (FAO, 2019; Saby et al. 2008; Singh et al. 2012). 

Sample size prediction, which is chiefly achieved using a pilot study, depends for its accuracy on 
certain assumptions concerning SOCS and its change over time. Some of these assumptions are 
easily verified, such as the spatial variability of SOCS around a specified sampling point – the value 
can be established by measuring the difference in SOCS between sets of closely spaced points. 
Other assumptions, such as the variability in the SOCS for a specified location over time, cannot 
easily be verified, simply because there are few long-term time series of SOCS from which this 
information could be estimated. In the latter case, reasonable estimates can be provided using 
historic SOCS measurements from simple estimates of SOCS change, but it is possible that the 
estimates are imperfect – the resulting sample size estimates will reflect this uncertainty. 

Both the power and MDD analysis require adoption of values for the significance level or Type I error 
rate (sometimes called the significance level) and the power, or 1-"Type II error rate". It is 
conventional to use a Type I error rate of 0.05, and a power of 0.8 or so (the latter corresponding to a 
Type II error rate of 0.2), but these figures are strongly dependent on the nature of the problem. 

The Type I error rate, or significance level, is the probability of rejecting the null hypothesis given that 
it is true. In other words, it is the probability, after analysis, of deciding that the true mean SOCS 
difference is not equal to zero, when in fact there is no difference at all. It is important that this 
probability is as low as possible since if α is too high the SOCS may be falsely flagged as having 
changed. A figure of 0.05 or even smaller is appropriate. 

The Type II error rate (1-"Power") is the probability of failing to reject the null hypothesis given that it is 
false. In other words, it is the probability after analysis, of deciding that there is no SOCS difference 
between the two dates, when in fact there is a difference of the mean between the two dates. 

There is usually a trade-off between the Type I and Type II error rates; for a given set of SOCS 
sample data, reducing the Type I error rate generally results in an increase in the Type II error rate 
(and consequently a decrease in the power), and vice versa. In the context of detecting whether the 
mean SOCS has changed, it is desirable to avoid false positive errors, so a low Type I error rate is 
preferred. Consequently, a higher Type II error rate is usually tolerable. A Type II error rate of as high 
as 0.2–0.4 may be quite acceptable. We note that there are no firm guidelines for the adoption of 
Type I and Type II error rates for SOCS change estimation other than convention (FAO, 2019; Saby 
et al. 2008; Singh et al. 2012). 

Grealish et al. (2011) provide simulation outcomes of sample size optimisation of a dataset produced 
by McKenzie et al. (2002), along with visual plots of the relationship between statistical power and 
sample size, with sample completeness (i.e. proportion of required samples actually acquired). An 
important conclusion from this visual summary is that data completeness (i.e. maintaining the required 
minimum sample size) is critical to maintain the pre-specified power of the study.  

de Gruijter et al. (2016) approach the sample size optimisation problem using a Value of Information 
approach (Morgan et al. 1990). Here, the sample size can be determined to maximize the expected 
profit for a farmer, by financial quantification of the value of the sample data and the costs to collect 
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the data. Data value depends on the precision of the estimate of SOCS change, as the tradable 
amount of carbon is determined largely by the certainty of estimates between two-time intervals. A 
high level of uncertainty means a likely low level of tradable carbon, so sampling should be increased 
accordingly. To increase the sampling, one also needs to be cognisant of the associated costs. As 
could be imagined, the maximisation of financial gain entails an iterative exercise under different 
stratification and sampling number settings. The compelling feature of the value of information 
approach is that it considers real socio-economic factors such as the market cost of carbon and the 
dollar amount of collecting a sample, features that are not considered in the MDD approach. But, like 
the MDD approach, there is an implied requirement of understanding what the variation of soil carbon 
is within the target universe, and this information is seldom available at the farm scale.  

Getting a measure of the spatial variation of SOCS is challenging in circumstances where there is little 
available data. For example, in the establishment of baseline stocks, there might be next to nothing 
available to plan for the initial audit. It has been suggested that consulting published literature on soil 
carbon variograms is useful, and good examples exist by way of Bishop and Pringle (2012) who 
provided a meta-analysis of paddock scale soil carbon variables. The diversity of the variograms in 
terms of nugget, sills, and ranges is potentially problematic, however, in terms of site specificity. One 
may be lucky to find a variogram that was constructed near their CEA, but there is little to go on in 
terms of the limit of extrapolation about which variograms to use where, so their utility has to be 
questioned, particularly in a soil auditing context. Existing soil carbon maps of the target universe are 
invaluable. Their availability while skirting the site-specificity issue, is probably much below that which 
would be expected, given much growth and activity in digital soil mapping in recent times (Arrouays et 
al. 2014). Much of the growth in digital sol mapping has been in global, national, and regional 
programmes, with comparatively less effort (outside of research studies) in field- and farm-scale 
settings. With the availability of a growing number of national soil mapping products, there have been 
some efforts to investigate their applicability to farm-scale applications. This work has centred on 
spatial downscaling and has had mixed outcomes in a soil carbon auditing framework because the 
uncertainties in the national mapping propagate through the farm-scale mapping, in some cases 
leading to inappropriate sampling recommendations (Malone et al. 2018).  

A general recommendation would be to conduct a pilot survey of the CEA. Ideally, the sampling would 
be optimised in terms of spatial and/or geographic coverage. Some prior information could be gleaned 
to inform sample size, or a sampling density of at least x samples per unit area could be stipulated. 
This pilot survey might come at a significant high cost (Chappell et al. 2013), but in the case where no 
other information is available it is essential and therefore of intangible value for subsequent sampling 
efforts and ongoing monitoring. In this case the expected benefits of a pilot survey are likely to 
outweigh the initial costs.  

How many strata and how to define strata? 

As noted in (de Gruijter et al. 2016), the mean level of SOCS within each subunit tends to be related 
(correlated), and the standard deviation of each subunit is often less than the standard deviation of 
the pooled SOCS samples from the whole farm. When this is the case (i.e. the standard deviation of 
the strata is less than the standard deviation of the SOCS for the farm as a whole), there is an 
advantage to stratification in terms of sampling efficiency. 

Although conceptually simple, there are several potential difficulties with this approach: 

1. It is not obvious how the stratification should be decided. Possible choices include 
stratification by farm plan, by landform, or by slope classes. However, there is no guarantee 
that the stratification chosen will give an overall reduction in the required minimum number of 
samples. For example, using Massey Tuapaka as an example, stratification by landform does 
reduce the estimated SOCS standard deviation within each landform class, but the overall 
required minimum number of samples is not reduced as a result.  

2. The number of pilot samples is increased in the stratification procedure, which increases the 
cost. 

3. Once a method for stratification has been decided, the second set of samples measured 
some years later must also be stratified in the same way. Therefore, a stratification method 
must be used that is likely to be stable and relevant over time. 

The optimisation of the number of strata is slightly less fraught than that for sample size. This is partly 
because within each stratum there will be a minimum sample requirement, meaning that increasing 
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the number of strata could have a multiplying effect on the total sample size in the case of equal sized 
strata. In some instances, such as the Australian 2018 method, a minimum of three strata are 
required although it is recommended that additional strata are incorporated where possible. In a 
statistical testing sense, one can go about defining the optimal number of strata using comparative 
methods against a null hypothesis (no strata). For example, in the case of the commonly used k-
means clustering, the total within-cluster sum of squares can be used as a metric to compare and 
optimise the number of strata. This general concept is at the heart of the approach used in de Gruijter 
et al. (2016).  

Other possible metrics for choosing the number of strata, as well as methods for assessing cluster 
purity are discussed at length in Odeh et al. (1992). In the special case where the CEA is large and 
symmetrical, the CEA may be stratified using a grid of strata to ensure equal areal sizes. Where the 
CEA is an irregular shape, compact geographical stratification is invaluable (Walvoort et al. 2010). 
Where a suite of environmental covariates is used for stratification, equal sized strata may be 
generated via generalization of the k-means clustering algorithm. This procedure is implemented in 
the FuzMe software created by Minasny and McBratney (2002), but to date examples of its 
application are rare. 

It is useful to frame the discussion about stratification as in de Gruijter et al. (2016), which is in terms 
of what is known about the spatial variation of soil carbon on the farm. For example, if nothing is 
known of SOCS variability, compact geographical stratification may be implemented. This makes 
sense because an important motivation is to maximise spatial coverage. The stratification may be 
improved if there is some ancillary information available that generally describes the environmental 
spatial variation across the CEA. Examples of such ancillary information include maps of elevation 
(and subsequent derivatives), remotely sensed data (e.g. NDVI as an indicator of vegetation 
greenness), yield data, and any other data that may have been collected via proximal soil sensing 
such as electrical conductivity or gamma radiometrics. With a multivariate suite of ancillary data, 
stratification would entail a k-means classification procedure. However, it is important to recognise 
that for the stratification to be useful for quantifying SOCS within the CEA, the variation(s) in the 
ancillary information must be related to the variation in SOCS. In the absence of such a relationship, 
imposing a stratification based on that information might lead to a reduced ability to detect changes in 
SOCS relative to imposing equal area strata. 

It is said that stratification is best achieved if a digital soil map of SOCS is available for use as a 
univariate source of information, for example via the cum-root-f method of Dalenius and Hodges 
(1959) or other approaches mentioned in de Gruijter et al. (2016). It is argued that a digital soil map of 
SOCS variation embodies the quantitative relationships between covariates (ancillary information) and 
measured SOCS. With the univariate source of information, stratification of a SOCS map involves 
locating strata boundaries along the variable distribution. As an aside, it would also be relatively easy 
to divide the map of soil carbon into spatial equal area size strata by ensuring the number of grid cells 
belonging to each stratum is kept the same. 

When using a SOCS map as a stratifying variable, there is an implied assumption that the digital map 
is error free. This is incorrect, as it is known that many different sources of uncertainty are propagated 
through to spatial predictions of phenomena, including soil variables and characteristics. Exploiting 
digital soil map uncertainties, de Gruijter et al. (2015) proposed an alternative method that can define 
a strata configuration along the spectrum of compact geographical and univariate SOCS map 
stratification. They called this method Ospats, and it uses a raster of predicted values and associated 
error variances for deriving the sampling strata. By taking into account the prediction variations, 
Ospats is able to produce stratifications that represent transitions between the ‘knowing nothing about 
SOCS variation’ (high mapping uncertainty) and ‘knowing a lot about SOCS variation’ (low mapping 
uncertainty) situations. The advantages of the continuum approach to stratification is that the 
configuration can adapt to inclusions of new data and improvements in soil mapping, ultimately 
making the SOCS monitoring effort more efficient and cost effective over time. What this approach 
does not satisfy, like many aspects previously discussed, is the data poor scenario. Essentially, a map 
with associated prediction variance is a mandatory requirement and is not easy to achieve, at the 
scale of the CEA. The spatial downscaling approach briefly summarised earlier is one such way of 
using relatively common national scale maps. The usefulness of this approach, however, is contingent 
on having relatively accurate national-scale mapping, which is not always guaranteed, given that such 
maps are created to address questions at spatial scales that do not necessarily correspond to those 
at the scale of a CEA, which could be a paddock or farm, etc. (Malone et al. 2018). 
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While analytical methods such as those discussed in the previous paragraphs can be used to 
determine the number of strata, simpler methods of stratification based on landforms and farm 
management can often be practical and better suited to data and resource/expertise-poor situations. 
However, some implied knowledge in terms of where to place strata boundaries and due diligence in 
the areal calculation of strata are required. Unless they have been split as separate CEAs, 
stratification boundaries could be based on topographical position or setting, different soil types or 
lithologies, and in a crude sense, differences in vegetation and land management practices. In New 
Zealand, farm environment plans (FEP) usually contain maps that break the farm into land 
management units (LMUs) based on the physical properties of the land and management as outlined 
in the previous sentence. FEP would therefore provide a good starting point for stratification, although 
the chosen approach is at the discretion of the landowner or implementer of SOCS benchmarking and 
monitoring. 

As mentioned in Section 4.1.3, the decision whether to analyse individual soil samples or composite 
samples will impact on whether strata boundaries can be refined through time. Once samples have 
been composited from across a stratum, boundaries cannot change.  

The process for calculating SOCS for individual strata and full CEAs (i.e. farms) is outlined in Section 
5.4.5. 

Summary: 

1 Decisions on whether stratification is desired, and if so, the method used and the number of 
strata and soil samples are ultimately the decision of landowner/manager and will be influenced 
by their specific objectives, skills and available resources (e.g. existing spatial data layers and 
money). 

2 If stratification is required, we recommend using farm management units or blocks defined in 
farm environment plans as a starting point for stratification. 

3 Where boundaries for stratification are not clear, automated methods of stratification based on 
specialized software (e.g. FuzMe or Ospats) can be used.  

4 There is potential to downscale New Zealand’s national SOCS map and use other finer scale 
spatial layers to delineate strata (e.g. Malone et al. 2018). However, this process would currently 
require scientists’ input. 

4.3.2 Spatial Trend 

This section will describe the sampling considerations for soil monitoring in general. The section 
builds on the previous discussion of design-based inference of spatial means to include new 
discussion about inferring the temporal trend of spatial means. In terms of SOCS, our questions 
include: Are the SOCS increasing, decreasing, or remaining stable? If changing, what is the rate of 
change? Our interest in changes can be motivated by the fact that SOCS are a tradable commodity, 
and financial reward is a possible motivator. Or changes can reflect alterations in soil function and 
building or maintaining SOCS is a way to sustain the overall soil resource. Key contributions by de 
Gruijter et al. (2006) and Lark (2009) provide deeper insight and guidance about monitoring natural 
resources in general and are summarised here.  

In monitoring SOCS, we have already established that because of coordinating sampling with other 
land use management practices, a sample for auditing purposes would be more appropriately 
conducted within a given window of time, for example, before or after seasonal sampling, or the top or 
bottom end of a cropping cycle, etc. These events preclude randomised sampling through time in 
favour of synchronous sampling patterns. This opens the question of sampling regularity, which is 
very much dependent on available resources, but a 1–10-year re-visit time interval is commonly 
thought to be appropriate for SOCS monitoring (Australian Government 2018; Wheeler 2014). 

Although this report specifies temporal sampling with the assumption of two sampling points in time, 
this does not necessarily have to be the case. In practise, for a given CEA it is worthwhile considering 
the relationship between how often the CEA is sampled (the sampling frequency) and the period of 
time over which one would want to define the impact of management on SOCS. For example, if it is 
important to make definitive statements on SOCS change over (say) five years, then it makes sense 
to sample the CEA more often over the five-year period, such as three times or preferably more. This 
increased frequency of sampling ensures that the temporal trend is a true representation of the impact 
of management. If only two points are used, at the start and end of the interval, the observed changes 
in SOCS can be affected by exogenous effects (e.g. extended periods of drought) that has an impact 
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on SOCS. By measuring SOCS regularly over time, it is more likely that the measured temporal trend 
is related to management rather than external factors. Since these external factors can generally not 
be predicted beforehand, it is difficult to incorporate them into the statistical power design for the 
required minimum sample size. However, increasing the number of sampling times will increase 
costs. 

4.3.3 Space-time sampling designs 

de Gruijter et al (2006) refer to five basic types of synchronous space-time sampling designs: 

1 Independent synchronous (IS) – where the sampling locations shift over time within the CEA. 
2 Static synchronous (SS) – where the sampling locations remain fixed over time. 
3 Supplemented panel (SP) – a compromise between both independent and static synchronous 

designs (two panels) where only some of the sampling locations are re-visited at the sampling 
times. 

4 Serially alternating (SA) – another hybrid design where, after some fixed number of sampling 
times no new locations are selected, but existing locations are revisited in the same order.  

5 Rotational (R) – a design method similar to SA but like SP starts with two or more panels, which 
are then sequentially rotated out and in again at the consecutive sampling times.  

Brus and de Gruijter (2013) provide some guidance on what space-time sampling is best suited to 
estimation of the mean or the trend, using simulation. This evaluation is framed in the context of the 
persistence of the spatial pattern of the target variable, such as SOCS, and the performance is 
evaluated on the basis of the covariance matrix of the parameters of a linear model for the change of 
the spatial means over time. The general advice is: 

1 When there is strong persistence of spatial patterns, SP space-time sampling is preferred. 
2 When there is no persistence of spatial patterns, IS or SA can be used for estimation of either the 

mean or the trend. 
3 When there is moderate persistence of spatial patterns, the advice is more complicated: 

a IS is the best method for estimation of the mean, 
b SS is the best method for estimation of the trend, 
c SP or SA are good compromise choices when both the mean and trend are required. 

What these results generally confirm is that revisiting sample sites reduces the sampling variance, 
and thus improves the overall precision of the spatial mean estimate of change. This is because by re-
visiting the same sites, the temporal correlation is taken into account, thus reducing the variance. 
Therefore, the SS approach of re-visiting and resampling near the same sites should require less 
samples (and hence cost) to detect a given level of change in SOCS than sampling new independent 
sites (the IS approach). However, a potential disadvantage of returning to the same sites is an 
envisaged loss of market confidence if ‘gaming’ of known monitoring sites occurs (Wheeler 2014), 
since it is important to ensure that changes in SOCS are real and not the product of preferential site 
treatment (fraud). 

It is important to note that these recommendations assume that the spatial pattern of SOCS is known 
when the space-time sampling method is to be designed. In an ideal world, this would be true, but in 
practice there might be insufficient information to describe this spatial pattern. In this latter case, 
hybrid designs, such as SP or SA might be preferred. Alternatively, IS or SS could be used where the 
mean or trend is required, respectively. 

An additional consideration is that the choice among space-time sampling schemes has been made in 
terms of the variance of the mean or trend components of SOCS, not the total cost. If minimum cost is 
an additional requirement, then the various designs would need to be evaluated for their cost 
structure. 

On balance, the hybrid SP design first, has the ideal statistical properties for a monitoring system and 
second, to some extent provides some protection against gaming the system, by ensuring that a 
certain proportion of the samples are randomised across the CEA. Operational choices would include 
what proportion of the total samples would remain fixed and what spatial sampling designs should be 
considered. Intuition says that if SP is used, then perhaps random sampling (e.g. stratified SRS) 
should be used for both panels (fixed and changing sample locations). For the fixed sampling portion, 
a spatial balance could be achieved through compact geographical stratification. For the changing 
sample location panel, stratification could entertain any of the options described above, including 
stratification based on the target variable. This option permits the configuration of sampling strata to 
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change, which could be realised by using such algorithms as OSPATS, to ensure maximum efficiency 
in the sampling effort. In a data poor situation, while the geographical stratification is certainly doable 
for the fixed sampling location panel, the practitioner could entertain any sort of stratification variable/s 
that is achievable as long as the areal properties of each strata are recorded and well defined. 

Summary: 

1 The static synchronous approach would be the simplest, cheapest (due to the least number of 
samples required), and most easily understood method for monitoring changes in SOC stocks at 
the farm scale. However, this approach could be susceptible to fraudulent practices because 
SOCS at known sampling locations could be deliberately altered (for example by the addition of 
manure). This risk could be avoided by implementing the independent synchronous approach or 
the risk reduced with the supplemented panel approach, but more sampling sites will likely be 
required using these approaches. The static synchronous approach also precludes the option of 
refining stratification through time because sampling locations are fixed. 

2 The final choice among the various space-time sampling schemes will depend on whether it is 
important to reduce the variance of the estimated mean SOCS, or the trend in SOCS over time, 
or resource cost, or some combination of these factors. Resolving the best design in this sense is 
likely to require simulation, as well as some field information. 

4.3.4 Quantifying SOCS changes over time  

Given the discussion above, confidence in the statistical inference of the spatial means through time 
may be increased by considering the temporal autocorrelation. The usual method for estimating the 
temporal trend of spatial means is by ordinary least squares regression where it was demonstrated in 
Chappell et al. (2013). From a statistical viewpoint, this approach can only be justified, however, in the 
case of an IS design, where no use is made of temporal autocorrelation between co-located 
observations at previous sampling times. From a practical standpoint, this approach limits the scope 
of space-time sample designs that could be entertained. 

Where spatial- and/or temporal-correlation is present, one approach that can be used is generalised 
least squares (GLS), described in detail by Brus and de Gruijter (2011).This versatile approach 
ensures that, irrespective of the space-time sampling design that is selected, the proper statistical 
inference is used to process the data. For an experienced practitioner, this novel development 
provides the necessary flexibility in selection of sampling designs to suit a specific monitoring context. 
However, this added flexibility comes at a cost in terms of the required knowledge and expertise to fit 
the GLS model. 

Summary:  

1 When quantifying changes in SOCS over time, ordinary least squares regression is the simplest 
approach, but is limited to independent synchronous space-time sampling. 

2 GLS can be used for more complex space-time sampling methods, but this approach is more 
computationally demanding, and requires at least some information on the degree or spatial 
and/or temporal correlation of SOCS in the CEA.  

  
  



 

24 • Design of an on-farm soil carbon benchmarking and monitoring approach for individual pastoral farms Ministry for Primary Industries  

5 Recommended approaches for farm-scale SOC 
benchmarking and monitoring in NZ 

Here we recommend and document approaches for benchmarking and monitoring SOCS at the farm 
scale in New Zealand. The recommended approaches are generally consistent with other national 
and international approaches (i.e. those discussed in sections 3 and 4 of this report) but written in the 
briefest way possible and adapted to the New Zealand context where relevant. Also included is an 
outline of the expertise required and a case study of the estimated costs associated with 
implementation of farm-scale SOCS benchmarking and monitoring in New Zealand. 

More detail is provided on the sampling design aspects compared with physical soil sampling and 
processing methods because these are relatively well defined and documented elsewhere.  

5.1 Define objectives for implementing SOCS measurements 

It is important to clearly articulate the objectives for implementing a farm-scale SOCS benchmarking 
and monitoring system and estimate the costs (see Section 5.6) and potential benefits before taking 
measurements. Going through this process will help confirm the desire to proceed, and the objectives 
can influence study design and sampling intensity.  

For purposes of illustration in these recommendations, we have nominally made the following simple 
objective that we think is realistic in relation to benchmarking and monitoring SOCS on a pastoral farm 
in New Zealand:  

• To design and implement a benchmarking and monitoring system to detect a SOCS change (gain 
or loss) of 2–5 Mg.ha–1 should such a change occur.  

This objective would enable a SOCS change of 1 Mg.ha–1 y–1 to be detectable after 2–5 years or a 
change of 0.5 Mg.ha–1 y–1 to be detectable after 4–10 years. On average, SOCS in New Zealand’s 
managed grasslands are approximately 100 Mg.ha–1 in the top 30 cm, so a change of 2 or 5 Mg.ha–1 
would be a change of about 2 and 5% respectively. For context, differences in average SOCS of 
between 5 and 10 Mg.ha–1 have previously been observed between different grassland management 
regimes in New Zealand (Barnett et al. 2014; Mudge et al. 2017) and observed average SOCS 
changes over time in some grassland soils across New Zealand have been between 0 and 1 Mg.ha–1 
y–1 (Parfitt et al. 2014; Schipper et al. 2014). Note that generally we are more interested in obtaining 
an accurate estimate of the change in SOCS rather than the mean SOCS at any given point in time. 

Attempting to determine a change in SOCS as small as 2–5% means that any unnecessary errors 
with sampling, soil preparation and analysis can easily mask detection of true changes. 
Consequently, we recommend very close attention is given to all steps of the sampling design 
described below and will necessitate that soil sampling, processing and analysis is implemented by 
well-trained technical staff. 

5.2 Study design 

5.2.1 Define and delineate the CEA 

An important step in the study design process is to decide on and then clearly define and delineate 
the CEA as follows: 

1 Decide whether to implement SOCS benchmarking and monitoring on the whole farm, or a 
selected area of the farm. 

2 Produce an accurate map of the CEA excluding areas where SOC will not be measured (e.g. 
buildings, wetlands, forested areas, races):  
a The map should be produced in a Geographic Information System (GIS) programme to 

enable accurate spatial quantification of different areas of the farm (e.g. strata). This will 
also help with the random generation and positioning of soil sampling sites. 

5.2.2 Stratification 

Stratification is used to delineate areas (strata) within the CEA (i.e. a farm) where SOCS and stock 
changes will be relatively uniform and usually helps enable more precise estimates of SOCS and 
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stock changes for a given sampling effort (and cost). If the whole CEA is homogenous (e.g. in terms 
of soils, topography, and management) then stratification may not be required. Historic land use 
should also be considered because this could strongly influence SOCS and stock changes (e.g. 
previous cropping would have likely reduced SOCS which could increase rapidly under permanent 
pasture).  

There are a number of different ways to stratify the CEA, but here we recommend two general 
approaches: 1) a relatively simple approach for when existing data, funding, and skills are limited, and 
2) a more complex approach that relies on prior knowledge of SOCS and multiple spatial data layers. 
If the whole CEA is homogenous but stratification is still desired (e.g. to determine potential change in 
SOCS for different parts of the farm) then strata could simply be defined as adjacent paddocks or 
blocks of paddocks (called ‘compact geographical stratification’). There is potential to refine 
stratification following a pilot study (see Section 5.2.4) and following the benchmarking sampling, but 
this requires that soil samples are not composited so each spatial sampling location has an 
associated SOCS value (see Section 5.2.5). 

Simple stratification based on farm environment plans 

Farm environment plans (FEP) are already required in most regions of New Zealand as part of 
Regional Council regulations (e.g. Canterbury Water 2019; Beef and Lamb n.d.). FEPs generally 
require a relatively detailed map that breaks the whole farm into different land management units 
(LMUs) based on the physical properties of the land/climate (e.g. soils, slope, aspect) and land 
management (e.g. effluent block or cropping block). Figure 3 shows a simple theoretical example of 
farm-scale stratification based on LMUs. The method by which LMUs are delineated will likely vary in 
complexity between different farms, but SOCS and stock changes will likely be more similar within, 
than between LMUs and therefore LMUs should provide a good basis to stratify for SOCS 
benchmarking and monitoring. If existing LMUs contain land with distinctly different soil types, 
topography or management practices, then these areas should be further divided for the purposes of 
SOC benchmarking and monitoring. If soils on the farm are poorly characterised, more detailed soil 
mapping may be warranted. If the CEA of interest is only a small portion of the farm, then it may be 
more appropriate to stratify by individual paddocks (finer scale LMUs) or even areas within paddocks.  

It is important to note that although LMUs may provide a reasonable basis for stratification, there is no 
guarantee that stratification using this approach will be suitable. As noted in de Gruijter et al. (2016), 
the mean level of SOCS and changes in SOCS within each stratification unit might be expected to be 
related (correlated), and the standard deviation of each stratification unit might be expected to be less 
than the standard deviation of the pooled SOCS samples from the whole farm. When this is the case, 
there may an advantage to stratification by LMU, but it might turn out that this is not the case. 

 

Figure 3: Illustration of a simple farm divided into three strata (different background colours) based on soil 

properties and drainage. Dotted lines are paddock boundaries. The grey areas represent a house, drive, shed and 

forested area which are excluded from the carbon estimation area. 

Effluent area

Well drained soil Well drained soil Poorly drained soil

House

D
ri

v
e

Shed  

Trees



 

26 • Design of an on-farm soil carbon benchmarking and monitoring approach for individual pastoral farms Ministry for Primary Industries  

Complex stratification based on detailed prior data and multiple spatial layers 

Malone et al. (2018) describe a method where New Zealand’s national scale SOCS map/model can 
be downscaled using high resolution local data (soil type map; digital elevation map and derived 
terrain attributes such as slope, aspect, wetness; apparent electrical conductivity; gamma 
radiometrics) and used as the basis to reduce the sampling effort for SOCS benchmarking. The 
downscaled SOCS map combined with local data can then be used to help delineate strata on 
individual farms where SOCS should be relatively uniform. The method was applied to two farms in 
the Manawatu region: 1) the Massey University 476-ha Tuapaka sheep and beef farm with 99 ha of 
flats and 365 ha of hill country, and 2) the Massey University 143-ha No. 1 Dairy Farm, which is 
situated on alluvial Recent soils bordering the Manawatu River. Figures 4–7 illustrate the stratification 
process for these two farms, with more specific details provided in Malone et al. (2018).  

The reliability of stratification using this approach depends on how accurate the national-scale SOCS 
map is for the farm in question and the amount and accuracy of higher resolution farm scale data. If 
there are differences in land management within a proposed CEA, this would need to be considered 
when deciding how to stratify for SOCS monitoring. For example, stratifying using the covariates 
noted above (e.g. soils and slope) might span two different management regimes where SOCS might 
be expected to increase in one but decrease in another. This would likely result in no change in 
SOCS being detected, even though changes in SOCS did occur.  

In general, this more detailed approach to stratification should provide strata that are homogenous in 
terms of SOCS (and likely stock changes), which should improve the precision with which SOCS and 
stock changes can be determined. The method can also incorporate a procedure to optimise the 
number of strata and sampling sites through time. This process of stratification (and other similar 
approaches) currently requires a high level of expertise. We therefore only recommend using this 
stratification approach if the combination of topography, soils and management were complicated and 
the benefits associated with precise SOCS benchmarking and monitoring were expected to be large 
relative to costs. However, a long-term goal would be to develop a web tool that interrogates a 
database of nationally available data layers and automates the stratification of any one farm. 
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Figure 4: (a) A national SOCS model (Stephen McNeill, pers. 

comm.; NZAGRC 2016) was used to derive (b) the baseline 

map and a weighted mean soil carbon stock estimate (93.77  

Mg.ha–1 to 30 cm; 90% confidence interval 54.4 – 133.15) for 

Massey University Tuapaka Sheep and Beef farm. 

Figure 5: (a) Stratification was achieved by 

downscaling the (a) baseline SOCS map to produce (b) 

a disaggregated SOCS map, which was then optimally 

stratified (c) to guide a soil sampling campaign. Panel 

(d) shows the high resolution covarying data layers 

(parent material, global irradiation, landform elements, 

wetness index, aspect, slope and elevation) used to 

guide the process of downscaling the national scale 

SOCS map. 

 

 

Figure 6: A national SOCS model (NZAGRC, 2016) (left) 

was used to derive a coarse scale SOCS map of the 

Massey University No. 1 Dairy farm (right). 

Figure 7: Covariate data layers (top) were used to 

downscale the national SOCS model and this finer scale 

map was then stratified to assist a stratified random 

sampling method for benchmarking SOCS and for future 

monitoring exercises. The black points are the random 

sampling locations in each stratum. 
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5.2.3 Procedure for determining soil sampling sites 

Once the CEA (Section 5.2.1) and strata have been defined and delineated (Section 5.2.2), three 
further sampling design issues must be decided: 

1 The procedure for random allocation of soil sampling sites within each stratum (this Section), 
2 The number of soil sampling sites required within each stratum (Section 5.2.4), and  
3 Whether to conduct analyses on individual or composite soil samples (Section 5.2.5). 

The procedure for allocating sampling sites within each stratum can be any method where sites are 
determined randomly, while also requiring that there is a defined probability for every point within the 
stratum being selected. The simplest method that meets these requirements is simple random 
sampling (SRS), and when this is combined with stratification the result is stratified simple random 
sampling (StSRS). An alternative is to use one of the spatial balanced sampling methods within each 
stratum, such as balanced acceptance sampling (BAS) (Robertson et al. 2013) (see Section 4.1.2). 
The balanced sampling methods have greater efficiency when compared with SRS; that is, fewer 
samples are required for a required accuracy of the CEA SOCS. However, SRS is easier to 
understand and simpler to implement in software, although reference implementations are well-known 
for all methods (McDonald 2016).  

If implementing StSRS, random soil sampling locations in each stratum need to be determined before 
sampling using a random number generator that produces random numbers that could include all 
possible latitude and longitude (or eastings and northings) values within the stratum. The Australian 
Government (2018) method stipulates that the precision of each soil sampling location is a minimum 
of five decimal places if latitude and longitude are used and three decimal places if northings and 
eastings are used. Figure 8 provides an example of potential random sampling site layout on a simple 
farm divided into three strata. 

5.2.4 Number of soil sampling sites required 

The number of soil sampling sites required in each stratum and the whole CEA for benchmarking or 
monitoring is dependent on how precise the estimate of the SOCS mean or change in the SOCS 
mean needs to be, as well as the spatial variability of SOCS and the variability of the rate of change in 
SOCS through time (temporal variability). The number of sites is also influenced by the type of 
monitoring design used. Unfortunately, it is not possible to ‘know’ for sure how many sampling sites 
are required for SOCS monitoring until samples are collected from two sampling dates. Indeed, the 
FAO (2019) and Australian Government (2018) methods provide examples of how to calculate 
minimum detectable differences in SOCS change once data from two or more points in time are in 
hand. However, it is useful to get an indication of the likely number of sampling sites required to meet 
the objective(s) of the study before investing in a sampling campaign. This can be achieved using a 
statistical power analysis, usually with data collected from a smaller pilot study. Here we use a subset 
of data from an existing SOCS survey from Massey Dairy 1 and Tuapaka (e.g. Figure 7) to show how 
a pilot study can be used to estimate the number of sampling sites required to detect a change in 
SOCS of 2 or 5 Mg.ha–1 when different types of monitoring design are used.  

We recommend using the static synchronous (SS) study design, where the same sites are 
revisited in each monitoring round, since this requires the smallest number of samples to 
detect a specified change in SOCS. However, for completeness, below we also describe the 
independent synchronous monitoring design and Section 4.3.3 provides a more detailed discussion 
on the pros and cons of different monitoring designs.  

Independent synchronous monitoring design  

For the independent synchronous (IS) monitoring design (outlined in Section 4.3.3), samples are 
collected at random locations (sites) across the farm. New independent random sites are sampled in 
the monitoring rounds at later dates. To illustrate how a pilot study could be implemented to determine 
the required sample size for this design, SOCS data from three of the random soil sampling sites in 
each of the four strata as shown in Figure 7 were used to provide a total of 12 pilot sampling sites 
spread across Massey Dairy 1. Note that 100 samples are available from previous research studies 
on Massey Dairy 1 but gathering this many samples for a pilot study is not realistic, which is why only 
12 were used as an example. Using this pilot set of samples, the estimated mean SOCS was 65.45 
Mg.ha–1, and the estimated standard deviation was 12.70 Mg.ha–1. Using an estimated temporal 
standard deviation of 0.6 Mg.ha–1, based on the assumption that random annual changes in SOCS at 
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any one sampling location will generally1 be within the range of ±1 Mg.ha–1 y–1, the spatial-and-
temporal SOCS standard deviation is 12.71 Mg.ha–1 (calculated from the pooled variance). This figure 
was used to estimate the required minimum sample size using a two group, two tail, t-test power 
analysis with a significance level of 0.05 and a power of 0.8. The result was that 636 sampling sites 
would be required for both the benchmarking and first monitoring round to detect a SOCS change of 2 
Mg.ha–1 in the top 30 cm. The same calculations for the more variable hill country Massey Tuapaka 
farm (with a standard deviation of 22.94 Mg.ha–1) showed that 2067 sites would be required for each 
sampling date (i.e. 4134 in total) to detect a SOCS change of 2 Mg.ha–1. 

Carrying out farm-scale SOCS monitoring with 636 (Dairy 1) or 2067 sites (Tuapaka) is probably not 
practically tenable. To reduce the soil sampling effort to a more practical level we have a few choices 
such as: 1) increasing the minimum size of the SOCS change we want to detect; for example for 
Massey Dairy 1, detecting a 5-Mg.ha–1 change instead of 2 Mg.ha–1 would require 103 sites when 
using the IS design; 2) changing the study design to use static synchronous sampling as described in 
the next subsection; or 3) using detailed stratification methods. As noted in Section 5.2.2, stratification 
can provide a way to reduce the sampling effort in cases where SOCS differ markedly between 
different parts of the farm but the method requires detailed prior information and computation to 
determine whether stratification will be beneficial. For Massey Dairy 1, stratification as illustrated in 
Figure 7 did not usefully reduce the number of monitoring sites required, due to the relatively uniform 
nature of SOCS on the farm. However, an analysis for Massey Tuapaka farm gives strikingly different 
results, improving the precision of the estimated mean SOCS by 26% for an allocation of 42 samples 
across the farm (Malone et al. 2018). The reduction in the sampling effort as a result of optimal 
stratification means that fewer samples would be required to detect a specific change in SOCS, or 
alternatively, a smaller change in SOCS could be detected for a specified sampling effort. 

Static synchronous SOCS monitoring design  

Since the required number of sampling sites needed for the IS monitoring design is impractical (i.e. 
636 for Massey Dairy 1) to detect a SOCS change of 2 Mg.ha–1, we now consider the static 
synchronous (SS) monitoring design. For the SS monitoring design, samples are still collected at 
random sites across the farm for the benchmark sampling, but for the subsequent monitoring rounds 
samples are collected in close proximity (e.g. spaced 5 metres apart) to the sites sampled in the 
benchmarking phase (Figure 8). This design exploits the fact that SOCS close together are usually 
more similar than those further apart (i.e. are spatially correlated). A power analysis for the SS study 
design requires an estimate of the standard deviation of the difference in SOCS between samples 
collected near each other (e.g. paired sites within 5 metres) as well as the estimated temporal 
variability of SOCS change.  

The original survey of Massey Dairy 1 was designed with the IS monitoring design in mind and did not 
have soil samples collected in close proximity, with most closely spaced points still over 30 metres 
apart. There are few data available in New Zealand where unbulked soil samples have been taken 
with a spacing of less than 10 metres and SOCS determined. Based on the few data that are 
available, the standard deviation of differences in SOCS from paired sites less than 10 metres apart is 
in the range 5–10 Mg.ha–1. Applying these figures to a paired sample, two tail, t-test power analysis 
with a significance level of 0.05 and a power of 0.8, the required minimum sample size is shown in 
Table 1 below. 

  

 

1 If the random changes in SOCS are Gaussian distributed and have a 90% confidence interval of [-1,1] Mg.ha–1, 

then the implied standard deviation is approximately 0.608 Mg.ha–1. We have used a figure of 0.6 in 

calculations.    
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Table 1. Estimated minimum number of samples for a two-sided t-test for paired SOCS samples, for various 

standard deviation of SOCS differences and two different specified changes in SOCS over time. The power estimate 

is based on a significance level of 0.05 and a required minimum power of 0.8. 

Standard deviation of  

SOCS differences 

Change in SOCS to be detected 

(significance level 0.05, power 0.8) 

Mg.ha–1 2 Mg.ha–1 5 Mg.ha–1 

5  52 11 

7  99 18 

10 199 34 

Table 1 shows that knowing the true value of the standard deviation of the SOCS differences for 
closely spaced samples is critical for estimation of the number of samples required for monitoring with 
a specified level of change in SOCS. Doubling the standard deviation of SOCS differences for closely 
spaced samples results in a requirement to quadruple the number of samples for 2 Mg.ha–1 change, 
or triple the sampling requirements for a 5 Mg.ha–1 change. This emphasises the need to adhere to 
FAO guidelines of 5–15 SOCS locations for a pilot survey (FAO 2019), and for careful field practise. 

Static synchronous SOCS monitoring with sample bulking 

Based on the calculations above (Table 1), SS sampling is a more efficient approach for SOCS 
monitoring for Massey Dairy 1 than IS. The sample analysis requirements (and thus costs) could be 
reduced further by bulking (or compositing) samples. If taking this approach, the actual soil sampling 
for the benchmarking and monitoring rounds remains almost identical to when analysing individual 
samples, with the only differences being that random groups of individual samples from within each 
stratum are bulked together and thoroughly homogenised before analysis (e.g. see Figure 8), and the 
number of individual sampling locations required changes slightly. The number of sampling sites 
required increases when samples are composited because the power analysis is conducted using the 
standard deviation of the differences in SOCS of bulked samples, of which there are logically fewer 
than for all the individual samples. The standard deviation of the difference of paired SOCS for any 

bulking factor can be estimated as Stdev_ind √𝑁𝐵⁄ , where Stdev_ind is the standard deviation of the 

differences between individual paired samples and 𝑁𝐵 is the bulking factor (the number of soil 
samples bulked together). FAO (2019) recommend that at least five cores should be collected to form 
a composite sample within a stratum. 

Assuming a nominal figure of 5 Mg.ha–1 for the standard deviation of the differences of paired SOCS, 
applying a bulking factor of 5 (i.e. 5 samples bulked together as described above) to the data from 

Massey Dairy 1, reduces the standard deviation of SOCS difference to 5 √5⁄ = 2.24 Mg.ha–1 for the 
spatial standard deviation of SOCS differences between bulked paired samples, assuming the bulked 
samples are independent. The pooled spatial-and-temporal SOCS standard deviation is now 2.32 
Mg.ha–1, and the required minimum number of bulked samples is 13 to detect a change of 2 Mg.ha–1. 
In this case, a total of 65 (13 bulked samples consisting of 5 cores each), or 13 more than if all 
individual soil samples were analysed. Further discussion on the advantages and disadvantages of 
bulking samples is provided in Section 5.2.5. 

Summary of how to conduct a pilot study 

The variability of SOCS on a particular farm is generally not known beforehand, so a pilot study needs 
to be undertaken to establish these values from which the number of sampling sites required to detect 
a given change in SOCS can be estimated using a power analysis. The recommended way to 
establish a pilot study when using the static synchronous monitoring approach is outlined in the steps 
below and illustrated in Figure 8. Steps for the independent synchronous sampling design are the 
same, except paired soil samples at each location are not required and the power analysis utilises the 
standard deviations across the sample area. 

1 Using the random approach outlined in Section 5.2.3, select a minimum of five soil sampling 
locations within each stratum defined within the CEA (Section 5.2.2). FAO (2019) recommends 
5–10 samples per stratum for a pilot study. 
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2 At each of the soil sampling locations, generate a new random sampling location spaced 5 
metres2 from the initial location using a random bearing from 0 to 360 degrees (Figure 8).  

3 Collect a soil sample at each of the locations determined in the previous step observing the 
protocols set out in Section 0 and process samples to determine SOCS for each sample as per 
the protocols in Section 5.4.  

4 Calculate the standard deviation of the difference in SOCS measured in the two soil samples at 
each location. 

5 Estimate the standard deviation for the temporal change in SOCS (generally not known, but a 
figure of 0.6 Mg.ha–1 is suggested).  

6 Calculate the pooled standard deviation for SOCS differences incorporating both spatial and 
temporal components, using: 

√Standard deviation of SOCS differences2 + Standard deviation of temporal SOCS change2. 

7 The pooled standard deviation is combined with the specified change in SOCS to be detected 
(e.g. 2 Mg.ha–1) a significance level, and required minimum power, and used in a paired t-test to 
estimate the required minimum sample size that will be required to detect the change in SOCS, 
given the specified parameters. Appendix 1 gives the mathematical development for this method, 
including when bulking samples. 

The method described above is particularly suitable for estimating the sampling effort required for 
monitoring SOCS change. The method can also be used to estimate the sampling effort required to 
estimate the mean SOCS for a farm (i.e. benchmarking), although this method of pilot study requires 
twice as many samples as strictly required for benchmarking. The simplest pilot study to estimate the 
sample size for benchmarking retains steps 1–3 above, but only one SOCS sample at each location. 
This simpler procedure yields an overall mean SOCS over the farm, as well as an estimate of the 
standard deviation of the independent samples.  

The mean SOCS for the farm has a precision that depends on the number of samples in the pilot 
study; more samples provides a greater degree of precision for the mean SOCS estimate. If the 
benchmarking study requires an estimate of the mean SOCS over the farm with a precision that is 
greater than that provided by the small pilot study (this will generally be true) then it is possible to 
estimate the number of additional samples that would be required to achieve this precision. Appendix 
1 provides the mathematical development for this method. 

It is important to note that the nature of the pilot study is specific to the requirements for the farm, 
such as whether the aim is benchmarking (i.e. estimating the mean SOCS to some required precision) 
or monitoring (i.e. measuring the change in SOCS over time). Acquiring two samples for each location 
in the pilot study gives the greatest flexibility, since the required sample size for the mean SOCS as 
well as the change in SOCS (using the SS approach) can both be determined from the pilot study. 
The compromise in the latter case is that twice as many samples are needed in the pilot study. 

 

2 A figure of five metres has been chosen at the time of writing to represent the likely repeatable distance that a 

location can be determined using consumer-grade satellite location systems (e.g. GPS). Over time, this distance 

is likely to reduce as satellite navigation improves location accuracy and consumer-grade navigation also 

improves.  
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Figure 8. Example layout of a pilot study for a farm with five sample pairs in a stratum. The second element of each 

pair (red dot) is located a distance of 5 m from the first, in a random quarter-circle direction from North. Note, a 

similar paired sampling design would be implemented for the full study, with the black dot representing the 

benchmark sampling and the red dot the first monitoring sampling. The full study would have more samples (e.g. 

Figure 9). 

Cautions 

The above example for Massey Dairy 1 shows the kind of calculations required to estimate the 
required minimum sample size. The calculations themselves, however, rely on several key 
assumptions: 

1 The sample locations are randomly placed over the different strata within the CEA 
2 The pilot study samples are spaced far enough apart that they can be considered independent 

samples of SOCS 
3 The distribution of the difference in SOCS is Normal (Gaussian), with no outliers. 

Violations of any of the above assumptions may give biased estimates in the sample size 
calculations. For example, if the sample locations in the pilot study are not random, the estimated 
mean SOCS might be biased. If outliers are present in the differences of the SOCS then the standard 
deviation of the difference might be incorrect. 

Finally, since the calculations depend on estimating a standard deviation of the SOCS differences, it 
is important to remember that many more sample points are required to estimate a standard deviation 
of a specific property (e.g. SOCS or SOCS differences) to a specified relative precision than are 
required to estimate the mean of the quantity to the same relative precision.3 Although a minimum of 
two samples is required to estimate a standard deviation, the resultant estimation has very poor 
precision, and many more samples are typically recommended. For this reason, FAO (2019) 
recommends 5–10 samples per stratum for a pilot study, which is strongly recommended.4 

 

3 For example, assume a “true” SOCS mean and standard deviation of 65 and 7 Mg.ha–1 respectively. A 

simulation shows that 15 samples has an estimated 95% confidence interval that is 11% of the mean, but 78% of 

the standard deviation. Increasing the number of samples to 100 improves the precision of the mean estimate to 

4.2%, but the precision of the standard deviation estimate for the same number of samples is 29%. 

4 For two samples 𝑥1 and 𝑥2, the sample standard deviation is |𝑥1 − 𝑥2|/√2, which is as informative as giving 

the sample range of the two sample values. There is a great deal of variability to this estimate, and adding 

additional value (e.g. three or more) progressively improves the precision of the sample standard deviation 

estimate. 
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5.2.5 Analysing individual vs bulked soil samples  

The mean SOCS and stock changes for a CEA or individual strata can be estimated in two ways: 1) 
analysis of single samples collected from across a stratum and 2) analysis of composite or bulked 
samples. If resources (i.e. time and money) are not limited, we recommend analysing individual soil 
samples because this provides the richest and most flexible data. For example, provided sufficient 
samples are taken in the benchmarking round, analysing samples from each location separately 
means the resulting data can be used to refine stratification and sample numbers for subsequent 
sampling rounds, and also provides useful information on the spatial distribution of SOCS. 
Refinement in this way will likely improve the precision with which SOCS changes can be detected 
and/or reduce the cost associated with sampling because fewer sampling sites may be required (de 
Gruijter et al. 2016). Having individual sampling points which have a known SOCS and then change in 
SOCS after subsequent sampling rounds, will also improve the ability to identify what factors are 
influencing changes in SOCS (e.g. slope, management).  

If soil samples are composited within or across strata, then stratum boundaries cannot be changed in 
future sampling and data analysis, unless the user is prepared to restart the monitoring process from 
the beginning. In this case, the initial sampling would act as a pilot study to provide information to 
better constrain sampling design. However, analysing composite samples can substantially reduce 
the number of samples that need to be processed and analysed, thus reducing costs. Compositing 
samples reduces the spatial variability of SOCS in the estimate of the mean, but multiple composite 
samples are still required to provide an indication of the variance around the mean. As a general rule, 
FAO (2019) suggest that the mean SOCS of composite samples taken from the same stratum should 
not differ by more than the SOCS change that is aiming to be detected (e.g. 2–5 Mg.ha–1). FAO 
(2019) recommend that at least five cores should be collected to form a composite sample within a 
stratum. 

Figure 9 illustrates a potential random sampling site layout on a simple farm and explains the 
difference between individual vs composite sampling. Section 5.6 provides cost estimates for the two 
different options based on the Massey Dairy 1 case study farm and Section 5.4.5 provides the 
relevant equations for estimation of spatial means using both individual and composite samples.  

Figure 10: Example of a simpler sampling layout than in Figure 9, where multiple cores are taken from 
small 20 m by 20 m plots and composited for analysis. If very rigorous benchmarking and monitoring 
of SOCS at the farm-scale is the main objective, the approach outlined in Figure 9 would be 
preferable. Figure 10 provides an example of a simpler small plot-based sampling layout than that 
illustrated in Figure 9Error! Reference source not found. This approach is easier to implement and 
will provide an accurate measure of SOCS and potentially changes SOCS for the individual plots. 
However, even if multiple plots were randomly located within each CEA, the resulting data would not 
be as spatially representative as the method shown in Figure 9. Therefore, if rigorous benchmarking 
and monitoring of SOCS at the farm-scale is the main objective, the approach in Figure 9 would be 
preferable. If a less spatially representative estimate of farm-scale SOCS and changes in SOCS was 
all that was required, then the simpler small plot approach may be adequate. Resulting data could 
then potentially be easily incorporated into the national SOCS monitoring system which employs this 
plot-based sampling approach across the whole country.  
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Figure 9: Illustration of a simple farm divided into three strata (different background colours) showing the potential 

layout of 15 random soil sampling sites in each stratum. Dotted lines are paddock boundaries. If samples were 

composited, the five samples with the same symbol in each stratum would be bulked together to provide three 

composite samples per depth for each stratum and nine in total for each depth. If each soil sample was analysed 

individually it would be a total of 45 samples. The grey areas represent a house, drive,shed and forested area which 

are excluded from the carbon estimation area. 

 

 
Figure 10: Example of a simpler sampling layout than in Figure 9, where multiple cores are taken from small 20 m 

by 20 m plots and composited for analysis. If very rigorous benchmarking and monitoring of SOCS at the farm-

scale is the main objective, the approach outlined in Figure 9 would be preferable.  
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5.2.6 Soil sampling depth and number of depth increments to analyse 

Following the FAO (2019) and Australian Government (2018) guidelines, soil sampling for SOCS 
should be to a minimum depth of 30 cm. If sampling is greater than 30 cm deep, SOCS for the 0–30 
cm depth must be reported separately. This is consistent with the depth the IPCC uses for national 
reporting of SOCS and also reduces systemic issues of shallow sampling depths. Soil material 
shallower than 30 cm is more susceptible to short-term changes associated with land management 
such as cultivation that can alter the distribution of C within the topsoil and can cause changes in bulk 
density.  

Ideally, we would encourage SOCS to be determined to 100 cm depth where possible. However, from 
practical experience and routine sampling throughout New Zealand, a depth of 60 cm is often a good 
compromise. Sampling deeper than 60 cm increases the likelihood of various issues associated with 
all techniques (e.g. hitting bedrock, difficulty inserting and extracting cores and inability to reach 
beyond 60 cm to remove soils and beads when sampling stony soils with pits). A depth of 60 cm is 
twice the recommended standard IPCC depth and is well into the subsoil of most New Zealand soils. 
Sampling to this depth will therefore capture any SOCS change in both the surface soil and a portion, 
if not all, of the subsoil.  

The decision on the number of soil depth increments to analyse is largely up to the implementer of the 
SOCS benchmarking and monitoring system. For context, soil sampling for the purposes of New 
Zealand’s national SOCS inventory reporting has been to 30 cm in three 10-cm increments. Analysing 
multiple depth increments provides important information about where changes in SOCS may be 
occurring but increases costs and is not required if changes in total SOCS for a nominated depth or 
soil mass is the key question. 

 

5.3 Soil sampling methods 

Specific details of soil sampling for SOCS have been extensively documented elsewhere (e.g. Davis 
et al. 2004; Whitehead et al. 2010) and therefore here we provide only a brief summary of the options 
available. Plans are currently in place to update documentation of step-by-step instructions for soil 
sampling, processing and analysis (Hedley et al. 2020 updated from Whitehead et al. 2010 and Davis 
et al. 2004). In future there may be merit in incorporating the details of study design and soil 
processing/analysis into the same document to provide a comprehensive summary of requirements in 
one place. 

We recommend one of three different soil sampling methods to determine SOCS, with the method 
chosen determined by on-site soil conditions (e.g. stony soils, sandy soils). The method used for the 
benchmarking (baseline) sampling should also be used for all subsequent monitoring samplings. 

5.3.1 Deep cores  

In non-stony soils, the most preferable sampling method from a cost and efficiency perspective is 
extracting continuous cores (minimum of 30 cm) and dividing these into discrete depth increments if 
required (Figure 11). Following established Australian Government (2018) methods we recommend 
that the cutting diameter of the core be >3.8 cm. Smaller diameter cores are less suitable for 
determining bulk density and more prone to compaction. It is important that the core is inserted to the 
correct depth and that on extraction the core breaks right at the bottom to ensure that a known 
volume of soil is sampled. Cores need to be checked for compaction upon extraction by measuring 
the length of core relative to the depth of the hole from which the core was removed. A discrepancy 
between the two would indicate compaction of the core or a loss of soil from the corer during the 
extraction process. Avoid transfer of soil material between depth increments. Any transfer of soil 
between depths will influence the SOCS measurement. Avoid sampling when soils are too dry or too 
wet, as these conditions increase the risk of soil transfer and loss (too dry) and compaction (too wet). 
It is also important that no soil material is lost from the sample right through to the determination of 
total sample and gravel weights in the laboratory (Figure 14). 
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Figure 11: Nine 4.2 cm diameter cores taken to 60 cm and placed on a cutting board ready to be cut and combined 

into a composite sample for each 10 cm depth increment. 

 

5.3.2 Pits and short cores 

Unfortunately, the deep coring technique is not suitable for stony soils (because the cores cannot be 
inserted) and some other soils because the samples fall apart/crumble and can jam in the corer during 
removal, which means a complete core is hard to extract. Sands and some Allophanic soils can be 
particularly problematic. In this situation it is preferable to use the second method, whereby a soil pit is 
dug and shorter cores (e.g. 10 cm deep) are used to extract samples in continuous increments 
through the profile to the desired depth (Figure 12). This method should be able to be used in all soils 
except stony soils.  

 

Figure 12: Illustration of a 10 cm diameter by 7.5 cm deep core being taken from a pit. The soil will be cut off flush 

with the bottom of the core and then another core taken (photo by Veronica Penny). 
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5.3.3 Quantitative pits for stony soils 

The third method is required in all stony soils. For this method, a pit of known surface area is 
excavated with all the soil material removed and screened (~10 mm sieve), with the >10 mm and <10 
mm fractions all weighed in the field. A homogenous and representative subsample of the <10 mm 
material is taken back to the laboratory for analysis. The volume of the pit (or different depth 
increments within the pit) is determined by lining the pit with a thin plastic bag and back-filling with a 
known quantity of water, sand or plastic beads. The volume is then calculated using the volume-to-
mass ratio of the water, sand or beads. When lining the pit with the plastic bag, ensure any voids are 
filled as much as possible (press bag into these voids and fill with beads) to capture any volume that 
was formed from removing rocks at the pit edge. For further information about the specific steps 
involved in sampling stony soils to determine bulk density, stone content and SOC content, see 
Hedley et al. (2012), or Davis et al. (2004).  

 

Figure 13: Photos showing how stony soils are sampled using the quantitative pit and bead method (photos from 

Thomas Caspari and Veronica Penny). See text for description.  

 

5.3.4 Information to record at each soil sampling location 

In addition to the soil sampling, we recommend that at a minimum the additional information below be 
collected/documented: 

• Date of sampling and description of soil moisture conditions (e.g. wet or dry). 

• Person(s) sampling  

• GPS location of each sampling site (accurate +/- 4m). 

• Ideally a photo in three different directions from the sampling location with notable permanent 
features of the landscape lined up with the sampling site. This will help relocation of the site if the 
GPS fails. Alternatively measure distances to key features with a tape measure. 

• Photo of each soil core or soil profile if a pit is dug. 

• Soil profile description/classification – depending on the level of detail required this may require 
the services of a professional pedologist. 

• Slope measured in degrees.  

• Aspect. 

• Land use / vegetation at the time of sampling and any known recent changes* such as re-
grassing or a fodder crop. 

*Note: the longer-term management history of the CEA and individual strata needs to be documented 
as accurately as possible in the study design phase (i.e. this could impact on stratification). Any 
changes in land use and management between sampling rounds also needs to be documented. 
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5.4 Soil processing and analysis  

5.4.1 Drying, sieving, and weighing 

Once soil samples have been returned to the laboratory, we recommend following the protocols 
established in the Australian Government (2018) method which is outlined in Figure 14. Soil samples 
need to be air-dried at ~40°C until a constant weight is achieved and then the total sample mass 
determined. The sample is then passed through a 2-mm sieve to separate the gravel/stones from the 
fine soil. The mass of the gravel/stones must be determined. A representative and homogenous sub-
sample of the fine fraction is removed for chemical (carbon) analysis and determination of the air-dry 
moisture content. It is critical to stipulate that the total mass of the sample is determined in step 1 of 
Figure 14 and the total mass of gravel/stones is also determined in step 3a. We recommend that the 
soil processing steps (Figure 14) be undertaken at the same laboratory as SOC analysis (Section 
5.4.2). 

 

Figure 14: Flow chart outlining the required soil sample processing steps prior to analysis for soil organic carbon 

concentration and calculation of soil organic carbon stocks (from Australian Government, 2018). 

 

5.4.2 Quantifying SOC concentration of a sample 

The SOC concentration needs to be determined by a calibrated and appropriate analytical technique 
(e.g. dumas combustion or using infrared spectroscopy). We recommend following the protocols 
adopted for the Australian 2018 methodology as outlined in Figure 15. One specific recommendation 
we draw attention to is: 

It is a requirement that analysis of organic carbon content is undertaken by a laboratory that is 
certified for organic carbon analysis by the Australasian Soil and Plant Analysis Council 
(ASPAC).  

For New Zealand applications this guidance should also be followed, but modified, such that the 
organic carbon analysis be undertaken by a laboratory with accreditation from International 
Accreditation New Zealand (IANZ). Following this recommendation will ensure the concentration of 
SOC in a given soil sample will be accurate and results between benchmarking and subsequent 
monitoring rounds consistent and comparable. The same laboratory and analytical method should be 
used for all subsequent sampling rounds and if a change in method or laboratory is essential, then 
very strict quality controls must be in place to ensure no systematic bias which could result in an 
apparent (but not real) change in SOCS. An air-dry archive of each sample will enable checks to be 
performed or will allow historic samples to be re-run if the analytical technique was to change in the 
future. 

The laboratory must have suitable protocols for dealing with inorganic carbon in samples if present. 
However, in New Zealand few soils outside of Central Otago contain appreciable amounts of 
inorganic carbon.  
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Figure 15: Flow chart outlining the steps required to determine the oven dry soil organic carbon concentration of 

the fine soil (<2 mm) following sieving as outlined in Figure 14 (from Australian Government, 2018). 

 

5.4.3 Calculating soil mass, stone content and bulk density 

The commonly accepted definition for SOCS is the mass of carbon in the portion of soil material that 
will pass through a 2-mm mesh (fine soil) expressed per unit area (e.g. Mg.ha–1) for a specified soil 
depth or mass (on an oven dry basis). The calculation of SOCS therefore relies on accurate 
measurement of the mass of fine soil per total sample volume (Poeplau et al. 2017). The simplest way 
of achieving this is by extracting a soil core (as outlined previously), where the volume will be pre-
determined by the core diameter and depth of soil sampled. For pit sampling in stony soils, the 
volume of the total sample is calculated from the volume of water, sand or plastic beads used to fill 
the pit (Section 5.3.3). 

The air-dry mass of the total sampled soil and gravel is determined in step 1 of Figure 14, and the 
mass of gravel in step 3a. The fine soil (<2 mm) mass is then determined by subtracting the mass of 
air-dry gravel/stones from the total air-dry sample weight (this is more accurate than directly 
measuring the <2 mm material because dust is lost during the sieving process).  

The oven dry mass (g) of fine soil (𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 
) is calculated by using the air-dry mass (g) of 

soil (𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑎𝑖𝑟 𝑑𝑟𝑦
) and the moisture content of the air-dry soil (often expressed as a moisture 

factor, MF) as follows: 

 

𝑀𝐹 =  1 + (
𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑎𝑖𝑟 𝑑𝑟𝑦

−𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑜𝑣𝑒𝑛 𝑑𝑟𝑦
 

𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑜𝑣𝑒𝑛 𝑑𝑟𝑦

)  Equation 7 

 

𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 
=  

𝑀𝑎𝑠𝑠 𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑎𝑖𝑟 𝑑𝑟𝑦

𝑀𝐹
 Equation 8 

 

If there is a desire to determine whole soil bulk density (i.e. for gravel plus fine soil), then gravel from 
step 3a in Figure 14 will need to be oven dried and weighed. If a fine soil (<2 mm) bulk density is 
required, the volume of the gravel (calculated using their respective particle density) will need to be 
subtracted from the total sample volume. 

5.4.4 Calculating SOCS of a sample 

Here we provide equations for the simplest method for calculating SOCS for a sample following 
Poeplau et al. (2017). The SOCS of a sample (i) is calculated by multiplying the concentration of SOC 
of the fine soil by the fine soil stock (𝐹𝑆𝑆𝑖) (<2 mm) in a given soil layer, reported on a per hectare 
basis (Mg fine soil ha-1), as follows:  

 

If using Mid-IR 

fine grind to 

<0.5 mm 
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𝐹𝑆𝑆𝑖(𝑀𝑔𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙  ℎ𝑎−1) =
𝑚𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑜𝑣𝑒𝑛 𝑑𝑟𝑦

(𝑔)

𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒 (𝑐𝑚3)
× 𝑑𝑒𝑝𝑡ℎ𝑖(𝑐𝑚) × 100 Equation 9 

 

where 𝑀𝑎𝑠𝑠𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙𝑜𝑣𝑒𝑛 𝑑𝑟𝑦
(𝑔) is from equation 8, 𝑣𝑜𝑙𝑢𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒 is the volume of the sample (cm3) 

and 𝑑𝑒𝑝𝑡ℎ𝑖 is the depth of the sample (cm) and 100 converts values to Mg.ha–1 

 

The SOCS (𝑀𝑔 𝐶 ℎ𝑎−1) is then calculated as: 

 

𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘𝑖
=  

𝑆𝑂𝐶𝑐𝑜𝑛𝑐 𝑠𝑜𝑖𝑙
(%)

100
× 𝐹𝑆𝑆𝑖(𝑀𝑔𝑓𝑖𝑛𝑒𝑠𝑜𝑖𝑙ℎ𝑎−1) Equation 10 

 

Where 𝑆𝑂𝐶𝑐𝑜𝑛𝑐 𝑠𝑜𝑖𝑙
 is expressed as a percentage (%) as per the result from the laboratory on an 

oven dry basis.  

It is important to note that when sampling to a fixed depth there is a risk that different masses of soil 
may be sampled between sampling rounds (e.g. due to compaction). A site that experiences 
compaction between the first and second samplings would have a greater mass of soil collected and 
therefore comparison of the SOCS between the two would not be appropriate. Therefore, it is critical 
that SOCS from all sampling times be expressed on an equivalent soil mass (ESM) basis to provide 
meaningful comparisons. The preferred way to calculate SOCS on an ESM basis is to utilise cubic 
spline functions applied to samples collected from at least three contiguous depth layers (e.g. 0–10 
cm, 10–20 cm and 20–30 cm). Detailed descriptions and excel based and R based templates for 
these calculations are provided by Wendt and Hauser (2013) and von Haden et al. (2020) 
respectively. When the study design involves returning to the same sampling sites for each sampling 
round, the ESM reference for each sampling site is defined by the sampled soil mass in the initial 
baseline sampling (e.g. the mass of soil to a given depth for an individual core sample). When the 
study design involves returning to new independent sampling points in the stratum, or compositing 
soil samples collected across a stratum, then the ESM reference should be set for the whole stratum.  

Here we briefly outline the Australian Government (2018) method for defining the ESM in a fixed, 
single depth sample (although we calculate the ESM of the fine soil stock (𝐹𝑆𝑆𝑖) from Equation 9, 
rather than the whole soil). The ESM should be set after the initial benchmarking sampling by collating 
the 𝐹𝑆𝑆𝑖 in all samples in a stratum (as defined in Figure 9), with the ESM defined as the mass of the 

10th percentile (𝐸𝑆𝑀𝜏=0.1). The 10th percentile is used rather than the mean, so that in 90% of cases 
there is no requirement for extrapolation of SOCS to unmeasured soil material. Extrapolation would 
occur in 50% of cases if the mean was used. Using the 10th percentile, rather than the minimum value 
also avoids the risk of one low value influencing all calculations for the duration of the project. Once 
the ESM is defined, the 𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘𝑖

 for all sampling rounds is adjusted and expressed on an ESM basis 

as per the equation below: 

𝑆𝑂𝐶𝑆𝑡𝑜𝑐𝑘𝐸𝑆𝑀𝑖 (𝑀𝑔 𝐶 ℎ𝑎−1) =  𝑆𝑂𝐶𝑠𝑡𝑜𝑐𝑘𝑖
 ×  

𝐸𝑆𝑀𝜏=0.1

𝐹𝑆𝑆𝑖
 Equation 11 

The same method used for ESM calculations must be applied for all sampling rounds. 

 

5.4.5 Calculating SOCS for carbon estimation areas (e.g. a farm) 

Section 5.4.4 describes how the SOCS is estimated for a sample within each stratum. If the SOCS 

mean is �̂̅�ℎ and the variance is �̂�(�̂̅�ℎ) over stratum ℎ, where ℎ is from 1.. (𝐻 is the number of strata 

within the CEA), then the overall mean SOCS over the CEA, �̂̅�𝑆𝑡, with total area 𝐴CEA is the area-
weighted sum of the means across the CEA (following de Gruijter et al. 2006): 

 

�̂̅�𝑆𝑡 =  ∑
𝐴ℎ

𝐴CEA
∙𝐻

ℎ=1 �̂̅�ℎ Equation 12  
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Similarly, the variance of the mean in stratum ℎ is estimated by area weighting using: 

�̂�(�̂̅�𝑆𝑡) =  ∑
𝐴ℎ

𝐴CEA
∙𝐻

ℎ=1 �̂�(�̂̅�ℎ) Equation 13  

 

In equation 12, �̂�(�̂̅�ℎ) is the variance of the within-stratum mean, which is estimated as: 

 

�̂�(�̂̅�ℎ) =  
1

𝑛ℎ(𝑛ℎ−1)
∑ (𝑧ℎ𝑖 − �̂̅�ℎ)2𝑛ℎ

𝑖=1  Equation 14 

 

Where 𝑛ℎ is the number of observations in stratum I, and 𝑧ℎ𝑖 is the observed value within stratum i. 

The 100(1 – α) % confidence interval for�̂̅�𝑆𝑡 is given by: 

 

�̂̅�𝑆𝑡 ±  𝑡1−𝛼/2 ∙ √�̂�(�̂̅�𝑆𝑡) Equation 15 

 

where 𝑡1−𝛼/2 is the 1 − 𝛼/2 quantile of the Student distribution with 𝑛 − 1degrees of freedom where 𝑛 

is the number of collected samples from the site. In general, when measuring SOCS for a CEA the 
spatial mean and variance are reported. 

5.5 Expertise required for SOCS benchmarking and monitoring 

Designing and implementing a SOCS benchmarking and monitoring system for a specific farm will 
require a range of skills and expertise as outlined in the following sections. 

5.5.1 Study design 

One skill required at the beginning of the study design process is the ability to engage with farmers 
and define meaningful objectives that meet their objectives. In most cases, the study design step 
would require a pilot study for the farm and pedological expertise would be invaluable in assessing 
the soil pattern. Appropriate study design will also require input from someone with a good 
understanding of farm systems and soil carbon to inform the stratification process and/or check 
whether an existing FEP is suitable to use for stratification. The expertise required for stratification will 
differ depending on the method chosen to define and delineate strata. If the simpler option of using an 
existing FEP is chosen, only limited Geographic Information (GIS) skills will be required to determine 
random sampling locations. If the more complex approach is taken to stratification, then more specific 
spatial modelling skills will be required. Statistical skills will also be required to calculate the likely 
number of sampling sites required to meet the specified objective (see Section 5.2.4).  

5.5.2 Soil sampling  

A key attribute required when sampling for SOCS is the ability to pay attention to detail and carefully 
follow protocols. Soil sampling for SOCS needs to be conducted in a more careful manner than for 
standard soil fertility testing because both accurate measurement of the concentration of carbon and 
total mass of soil in a defined sample volume is required. Here we are attempting to demonstrate 
changes as small as 5% of the stocks and so 5% errors with sampling will mask true changes or 
indicate untrue increases or decreases. Sampling will also be much deeper (≥30 cm) than for typical 
soil fertility testing (usually 7.5 or 15 cm).  

General field team requirements would include: 

• Good off-road driving expertise and understanding of on-farm health and safety and biosecurity 
issues.  

• A fitness level for physically demanding soil sampling (coring or pit excavation). 

• Ability to use handheld global positioning systems (GPS) to find predetermined sampling locations 
and accurately record and then download coordinates of sampled positions. 
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• Ability to identify when predetermined random sampling locations are not suitable (e.g. a sampling 
site falls in a small area of forest that should have been excluded from the CEA). 

More specific expertise required for soil sampling is: 

• Ability to decide which soil sampling method is appropriate for each specific location (e.g. pit 
excavation vs coring). 

• Ability to extract intact soil cores with no compaction (or note compaction) and make sure no 
sample material is lost.  

• Ability to excavate pits for stony soils and to determine the volume of the hole and the stone 
content. 

• Ability to clearly label samples. 

• Basic understanding of how to describe a sampling site (e.g. slope, aspect, vegetation) and soil 
profile (at least soil order level – although this may not be essential at the farm scale depending 
on objectives).  

We strongly recommend that if SOCS results are intended to be used for reasons other than general 
interest, then personnel involved in sampling should be required to do some form of standardised 
training in the techniques. Any training needs to involve a field component. 

5.5.3 Processing and analysis of samples 

Although the soil processing steps outlined in Section 5.4.1 could be carried out by most people with 
appropriate equipment (e.g. 2-mm sieve and clean drying systems (40°C)), we strongly recommend 
that soil samples collected in the field be sent for processing and SOC analysis (Section 5.4.2) in the 
same laboratory, which has accreditation from International Accreditation New Zealand (IANZ). This is 
consistent with the Australian Government (2018) method and will ensure good quality control over 
results and provide confidence that results between benchmarking and subsequent monitoring rounds 
are comparable. 

5.5.4 Data analysis and interpretation 

Calculating SOCS for individual samples is relatively simple, but it is more complicated to implement 
equations to calculate stocks, stock changes and their variances for whole CEAs, particularly one with 
strata of varying sizes. We recommend that someone with strong statistical skills is involved at some 
point in the process. This could be to initially set up the analysis system (e.g. an excel workbook), or 
at least to check the procedures used. Calculations need to be transparent and auditable.  

The data analysis and interpretation process could potentially be simplified and streamlined with the 
development (e.g. for NZ) of standardized easy to use spreadsheets which only require input of key 
measured parameters (e.g. SOC concentration, fine soil mass) and will then calculate SOCS and 
stock changes for individual samples, strata and CEAs. This could potentially be associated with a 
centralised database.  

5.5.5 Summary of expertise requirements 

In general, many rural professionals (e.g. farm consultants, fertiliser representatives) with some 
specific training related to processes influencing SOC stocks and stock changes, soil sampling and 
processing, and subsequent data analysis and interpretation could design and implement a SOCS 
benchmarking and monitoring programme for individual farms. Additional specialist statistical skills 
may be required for estimation of the number of samples, and spatial modelling skills would be 
needed if the detailed stratification option were chosen. Scientists and associated technicians from a 
few Crown Research Institutes (CRIs) or universities would also have the expertise required to 
implement the necessary protocols for SOCS benchmarking and monitoring. 

Development of standardized easy to use spreadsheets could simplify and streamline the data 
analysis and interpretation process and would aid with potential aggregation of SOCS data into 
industry and national databases for wider analyses. Updated documentation (e.g. updated from 
Whitehead et al. 2010 and Davis et al. 2004) of more detailed step-by-step instructions for soil 
sampling, processing and analysis may also improve consistency of the methods used. 
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5.6 Estimated costs  

The costs to design and implement a SOCS benchmarking and monitoring system will vary 
considerably between farms, depending on a range of factors such as: the objective (e.g. the 
precision with which SOCS and stock changes need to be determined) farm size, topography, spatial 
variability, and whether individual or composite samples are analysed. The costs will also depend on 
who is designing and implementing the system and the associated charge out rates.  

As an example, Table 2 provides a summary of estimated costs for benchmarking and subsequent 
monitoring of SOCS for the 143 ha Massey University No.1 Dairy Farm (Dairy 1) using the Static 
Synchronous design. Costs are based on typical Crown Research Institute scientist and technician 
charge-out rates, and sample preparation and analysis costs based on Manaaki Whenua’s IANZ 
accredited Environmental Chemistry Laboratory. It is important to note that the costs in Table 2 
are only an example based on the specific assumptions/decisions outlined in this section. If 
different assumptions were made, costs could increase or decrease.  

As outlined in Section 5.2.4, existing SOCS data were used to simulate a pilot study to estimate the 
minimum sampling effort to detect a change in SOCS of 2 or 5 Mg.ha–1. The result from the pilot study 
was that a minimum of 52 soil sampling sites would be required to detect a change in SOCS of 2 
Mg.ha–1 between two sampling rounds (using a 5 Mg.ha–1 value for the standard deviation of the 
differences of closely spaced SOCS samples), while 11 sites would be required to detect a change of 
5 Mg.ha–1 (Section 5.2.4). The cost of soil sampling in the pilot study itself was not included in these 
calculations. For the purposes of costings, the number of sampling sites was kept at a multiple of four 
to ensure that an even number of samples were ‘collected’ from each of four strata for the different 
scenarios (see Figure 7 and Table 2) (i.e. 52/4 = 13 samples per stratum). The number of samples 
was increased for the bulking option, so the FAO (2019) recommendation of having a minimum of five 
samples per bulked sample was followed (i.e. increase the number of samples per stratum to 15, a 
multiple of five). This yields a total of 60 samples (i.e. 15×4 samples total). Costings also followed the 
FAO (2019) recommendation that samples from (at least) “three discrete, contiguous and successive 
soil layers should be available to describe how bulk density and SOC concentrations change from the 
surface layer downward”, for example, layers of 0–15 cm, 15–30 cm and 30–60 cm. It was assumed 
that sampling was via use of deep continuous cores (Figure 11). 

The total estimated costs for benchmarking when aiming to detect a change of 2 Mg.ha–1 was 
$9,552 when analysing composite samples, compared with $17,129 if all samples were analysed 
individually. Total benchmarking costs for a system designed to detect a change of 5 Mg.ha–1 would 
cost $7,493 (using the individual sample option). Costs for each subsequent monitoring round were 
estimated to be the same as the benchmarking round minus the study design value used (e.g. 5,552 
for the composite sample option to detect a change of 2 Mg.ha–1). Costs for the hill country Massey 
Tuapaka farm would be at least four times those for Dairy 1.  
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Table 2: Estimated costs for soil organic carbon stock benchmarking and monitoring for the 143 ha Massey 

University No. 1 Dairy farm. Costings are based on the estimated number of samples required to detect a change in 

SOCS of 5 Mg.ha–1 between two samplings should such a change occur. Hourly rates are based on typical Crown 

Research Institutescientist and technician charge out rates, with sample preparation and analysis costs based on 

Manaaki Whenua’s IANZ accredited Environmental Chemistry Laboratory. Note: costs for a pilot study (should it be 

needed to determine SOCS spatial variability) are not included 

   

Individual 
samples for  

2 Mg.ha–1 
change 

Composite 
samples for  

2 Mg.ha–1 
change 

Individual 
samples for  

5 Mg.ha–1 
change 

Activity  Hrs 
$ hr or 

sample $ totals $ totals $ totals 

Study design      

Liaise with landowner, define objectives, check 
management history, compile relevant datalayers, 
delineate the CEA and strata, estimate/calculate the 
number of sampling sites required and determine 
random sampling locations. 20 200 4,000  4,000  4,000  

Number of strata and samples    n n n 

Number of strata selected - - 4  4  4  

Number of cores taken per strata - - 13  15  3  

Total number of cores taken - - 52  60  12  

Number of depth increments per core - - 3  3  3  

Number of composite samples per strata - - - 3  - 

Total number of soil samples to process and analyse - - 156 36  36 

Soil sampling       

Travel to and from the farm (assuming 80 km total and 
$0.9 per km + time cost) 1 130 202  202  202 

Hours required to sample soils assuming 0.33 hrs per 
core to 60 cm, inc. travel between cores →  17 20 4 

Costs for soil sampling  130 2,231  2,574  515 

Subtotal – soil sampling 
  2,433  2,776  717 

Sample preparation and analysis      

Air-drying and sieving through <2-mm mesh - 17               2,652                    612                    612  

Air-dry moisture content - 9               1,404                    324                    324  

Total carbon (and nitrogen) analysis via LECO furnace  - 31               4,836                1,116                1,116  

Bulk density analysis - 9               1,404                    324                    324  

Subtotal – sample preparation and analysis 
 

66             10,296                2,376                2,376  

Data compilation and calculations  2 200 400  400  400 

Total for study design and benchmarking 
              17,129                9,552                7,493  

Ongoing cost per monitoring time                13,129                5,552                3,493  
1In the case of Massey No. 1 Dairy Farm, travel would be less than this, but this value has been included because it is 
estimated to be a typical distance required to be travelled for soil sampling.  
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Appendix 1: Mathematical development of sample size 
requirement 
In this Appendix we develop the mathematical method that can be used to estimate the required 
sample size from a pilot study of a farm or stratum. In this development, we do not provide a step-by-
step justification of the steps, but instead make use of several fundamental relationships, as follows: 

1 If 𝑋 is some statistical quantity that is Normally distributed with mean 𝜇 and standard deviation 𝜎, 

then we say 𝑋~𝑁(𝜇, 𝜎2). 

2 If 𝑋~𝑁(𝜇𝑋, 𝜎𝑋
2) and 𝑌~𝑁(𝜇𝑌, 𝜎𝑌

2), then 𝑋 − 𝑌~𝑁(𝜇𝑋 − 𝜇𝑌, 𝜎𝑋
2 + 𝜎𝑋

2 − 2𝜌𝜎𝑋𝜎𝑌), where 𝜌 is the 

correlation between 𝑋 and 𝑌. 

3 If 𝑋~𝑁(𝜇𝑋, 𝜎𝑋
2) and 𝑌~𝑁(𝜇𝑌, 𝜎𝑌

2), then 𝑋 + 𝑌~𝑁(𝜇𝑋 − 𝜇𝑌, 𝜎𝑋
2 + 𝜎𝑋

2 + 2𝜌𝜎𝑋𝜎𝑌), where 𝜌 is the 

correlation between 𝑋 and 𝑌. 

4 If 𝑋~𝑁(𝜇𝑋, 𝜎𝑋
2) and 𝑌~𝑁(𝜇𝑌, 𝜎𝑌

2) and the correlation between 𝑋 and 𝑌 is zero then 𝑋 −
𝑌~𝑁(𝜇𝑋 − 𝜇𝑌, 𝜎𝑋

2 + 𝜎𝑋
2) and 𝑋 + 𝑌~𝑁(𝜇𝑋 + 𝜇𝑌, 𝜎𝑋

2 + 𝜎𝑋
2). 

5 If 𝑋~𝑁(𝜇𝑋, 𝜎𝑋
2) and 𝑌~𝑁(𝜇𝑌, 𝜎𝑌

2), and if 𝜎𝑋 = 𝜎𝑌 = 𝜎 (in other words, the standard deviations are 

the same) then 𝑋 − 𝑌~𝑁(𝜇𝑋 − 𝜇𝑌, 2𝜎2(1 − 𝜌)) and 𝑋 + 𝑌~𝑁(𝜇𝑋 − 𝜇𝑌, 2𝜎2(1 + 𝜌)). 

The details of the above relationships can be found in standard texts (e.g. Bain and Englehardt 1991). 

 

Figure 16. Example layout of a pilot study for a farm with five sample pairs in a stratum. The second element of 

each pair (red dot) is located a distance of 5 m from the first, in a random quarter-circle direction from North. The 

grey areas represent a house, drive,shed and forested area which are excluded from the carbon estimation area. 

Assume that there are 𝑁𝑃 pilot point pairs. Each pair of points is spaced a fixed small distance apart, 
with a random orientation between them. The point pair, or at least the centre of the point pair, is 
located randomly over the sampling domain. Figure 16 shows the point pair layout in schematic form. 
FAO recommends a minimum of five locations for the pilot survey (FAO 2019). 

Assume that SOCS is Normally distributed with mean 𝜇 and variance 𝜎𝑖
2, where 𝜎𝑖 is the standard 

deviation of independent SOCS samples. That is, the SOCS is distributed as 𝑁(𝜇, 𝜎𝑖
2). Assume that 

we carry out the pilot study field work and then calculate the SOCS difference between each of the 
point pairs (i.e. the difference in SOCS between locations a small distance apart), with the 

measurements taken at the same point in time. The difference will be distributed 𝑁(0, 𝜎𝑠
2), if the 

standard deviation of the difference is 𝜎𝑠. The difference between the two SOCS measurements taken 
at the same time should have a mean of zero, since the points are Normally distributed.  

If a second set of SOCS measurements is taken some years later, the SOCS at each location will 
have changed up or down during that period. The mean change in SOCS over time is assumed to be 
fixed (in other words, it is spatially invariant), with a standard deviation of  𝜎𝑡. Generally, 𝜎𝑡 is difficult 
to measure, and its value must be estimated from observed change in SOCS from different sites. A 
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figure of 0.6 Mg.ha–1 is suitable. Since the spatial and temporal standard deviation components 𝜎𝑠 and 
𝜎𝑡 are independent, the standard deviation of the difference in SOCS between the first and second 

measurement dates 𝜎diff = √𝜎𝑠
2 + 𝜎𝑡

2. 

Now we consider the estimation of the required minimum sample size from measurements of 𝜎𝑠, and 

specification of the minimum change in the SOCS (∇SOCS), a significance level (Type-I error or 𝛼), 

and target power (1 − Type‐II error rate or 𝛽). The appropriate power calculation is a paired-sample 
two-sided t-test. The sample size estimation can be carried out in standard software, such as the 
power.t.test function in the standard R library5. Alternatively, the calculations may be carried out in a 
statistical power calculator, such as G*Power6 (Faul et al. 2007, Faul et al. 2009). The calculations 
typically estimate the power size in terms of the effect size 𝑑: 

𝑑 =
∇SOCS

𝜎diff
. 

 

 

 

5 An appropriate reference is https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/power.t.test.  

6 See https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-

arbeitspsychologie/gpower.html.  

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/power.t.test
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
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